| Lecture 22: |
| :---: |
| Query Optimization (2) |
| Friday, November 19, 2010 |
|  |

## Outline

- Search space
- Algorithms for enumerating query plans
- Estimating the cost of a query plan


## Key Decisions

Logical plan

- What logical plans do we consider (leftdeep, bushy ?); Search Space
- Which algebraic laws do we apply, and in which context(s) ?; Optimization rules
- In what order do we explore the search space ?; Optimization algorithm


## Optimizers

- Heuristic-based optimizers:
- Apply greedily rules that always improve
- Typically: push selections down
- Very limited: no longer used today
- Cost-based optimizers
- Use a cost model to estimate the cost of each plan
- Select the "cheapest" plan



## Dynamic Programming

Originally proposed in System R [1979]

- Only handles single block queries:

| SELECT list |
| :--- |
| FROM R1, $\ldots$, Rn |
| WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND $\ldots{\text { AND } \text { cond }_{k}}$ |

- Heuristics: selections down, projections up



## Plan Enumeration Algorithms

- Dynamic programming (in class) - Classical algorithm [1979]
- Limited to joins: join reordering algorithm
- Bottom-up
- Rule-based algorithm (will not discuss)
- Database of rules (=algebraic laws)
- Usually: dynamic programming
- Usually: top-down

Dan Suciu -- 444 Spring 2010

## Dynamic Programming

- Search space = join trees
- Algebraic laws = commutativity, associativity
- Algorithm = dynamic programming ©




## Types of Join Trees

- Right deep:


Dan Suciu -- 444 Spring 2010

## SELECT list FROM R1, <br> FROM R1, ....Rn WHERE cond AND cond, AND . . . AND cond <br> Dynamic Programming

Join ordering:

- Given: a query R1 | R2 |
| :--- |
| $\bowtie \ldots \bowtie R n$ |
- Find optimal order
- Assume we have a function cost() that gives us the cost of every join tree

SELECT list | FROM R1, ....Rn |
| :--- |
| WHERE cond ${ }_{1}$ AND cond $_{2}$ AND $\ldots$ AND $^{2}$ cond |

Dynamic Programming

- For each subquery $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ compute the following:
$-\operatorname{Size}(Q)=$ the estimated size of $Q$
- Plan $(\mathrm{Q})=$ a best plan for Q
$-\operatorname{Cost}(Q)=$ the estimated cost of that plan


## SELECT list FROM R1,..., Rn <br> WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND $\ldots$ AND cond $_{k}$ <br> Dynamic Programming

- Step 1: For each $\left\{\mathrm{R}_{\mathrm{i}}\right\}$, set:
$-\operatorname{Size}\left(\left\{R_{i}\right\}\right)=B\left(R_{i}\right)$
$-\operatorname{Plan}\left(\left\{R_{i}\right\}\right)=R_{i}$
$-\operatorname{Cost}\left(\left\{R_{i}\right\}\right)=\left(\right.$ cost of scanning $\left.R_{i}\right)$


## SELECT li <br> WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond $_{k}$ <br> Dynamic Programming

- Step 3: Return Plan(\{ $\left.\left.\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}\right)$

\section*{| SELECT list |
| :--- |
| $\begin{array}{l}\text { FROM R1, ...,Rn } \\ \text { FHERE cond } \text { AND cond }_{2} \text { AND } \ldots \text { AND }^{2} \text { cond } \\ k\end{array}$ | <br> Dynamic Programming}

- Step 2: For each $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$ involving $i$ relations

What's a reasonable

- Size $(\mathrm{Q})=$ estimate it recursively estimate?
- For every pair of subqueries $Q^{\prime}, Q^{\prime \prime}$ s.t. $Q=Q^{\prime} \cup Q^{\prime \prime}$ compute cost(Plan(Q') $\left.\mathrm{D}^{\prime} \operatorname{Plan}\left(\mathrm{Q}^{\prime \prime}\right)\right)$
- $\operatorname{Cost}(Q)=$ the smallest such cost
- $\operatorname{Plan}(\mathrm{Q})=$ the corresponding plan


## Example

To illustrate, ad-hoc cost model (from the book $\odot$ ):

- $\operatorname{Cost}\left(\mathrm{P}_{1} \bowtie \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+$
size(intermediate results for $P_{1}, P_{2}$ )
- Cost of a scan = 0

|  | Subquery Size Cost <br> $\mathrm{T}(\mathrm{R})=2000$ <br> $\mathrm{~T}(\mathrm{~S})=5000$ <br> $\mathrm{~T}(\mathrm{~T})=3000$ <br> $\mathrm{~T}(\mathrm{U})=1000$   <br> RS   <br> Plan   <br> RT   <br> RU   <br> ST   <br> SU   <br> TU   <br> RST   <br> RSU   <br> RTU   <br> STU   <br> RSTU   |
| :---: | :---: | :---: | :---: | :---: |


|  | Subquery | Size | Cost | Plan |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}(\mathrm{R})=2000$ <br> $\mathrm{~T}(\mathrm{~S})=5000$ <br> $\mathrm{~T}(\mathrm{~T})=3000$ <br> $\mathrm{~T}(\mathrm{U})=1000$ | RS | 100 k | 0 | RS |
| RT | 60 k | 0 | RT |  |
| RU | 20 k | 0 | RU |  |
| ST | 150 k | 0 | ST |  |
| SU | 50 k | 0 | SU |  |
| TU | 30 k | 0 | TU |  |
| RST | 3 M | 60 k | (RT)S |  |
| RSU | 1 M | 20 k | (RU)S |  |
| RTU | 0.6 M | 20 k | (RU)T |  |
| STU | 1.5 M | 30 k | (TU)S |  |
| RSTU | 30 M | 60 k <br> $+50 \mathrm{k}=110 \mathrm{k}$ | (RT)(SU) |  |

## Reducing the Search Space

- Restriction 1: only left linear trees (no bushy) Why?
- Restriction 2: no trees with cartesian product
$R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
Plan: $(R(A, B) \bowtie T(C, D)) \bowtie S(B, C)$
has a cartesian product.
Most query optimizers will not consider it


## Dynamic Programming: Summary

- Handles only join queries:
- Selections are pushed down (i.e. early)
- Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
- Left linear joins may reduce time
- Non-cartesian products may reduce time further


## Rule-Based Optimizers

- Extensible collection of rules Rule = Algebraic law with a direction
- Algorithm for firing these rules Generate many alternative plans, in some order
Prune by cost
- Volcano (later SQL Sever)
- Starburst (later DB2)


## Completing the Physical Query Plan

- Choose algorithm for each operator
- How much memory do we have?
- Are the input operand(s) sorted?
- Access path selection for base tables
- Decide for each intermediate result:
- To materialize
- To pipeline


## Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid >300^ scity=‘Seattle’
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?
- We should pick the most selective access path
$\qquad$


## Access Path Selectivity

- Access path selectivity is the number of pages retrieved if we use this access path
- Most selective retrieves fewest pages
- As we saw earlier, for equality predicates
- Selection on equality: $\sigma_{a=v}(R)$
- $V(R, a)=$ \# of distinct values of attribute a
- $1 / V(R, a)$ is thus the reduction factor
- Clustered index on a: cost $B(R) / V(R, a)$
- Unclustered index on a: cost $T(R) N(R, a)$
- (we are ignoring I/O cost of index pages for simplicity)


## Materialize Intermediate Results Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ?
- Cost =
- How much main memory do we need ?
- $\mathrm{M}=$


## Pipeline Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ? - Cost =
- How much main memory do we need?
$-\mathrm{M}=$



## Example

- Logical plan is:

- Main memory M = 101 buffers



