Lecture 22: Query Optimization (2)

Friday, November 19, 2010

Outline

Search space

Algorithms for enumerating query plans

Estimating the cost of a query plan

Key Decisions

Logical plan

- What logical plans do we consider (leftdeep, bushy?); Search Space
- Which algebraic laws do we apply, and in which context(s) ?; Optimization rules
- In what order do we explore the search space?; Optimization algorithm

Key Decisions

Physical plan

- What physical operators to use?
- What access paths to use (file scan or index)?

Optimizers

- Heuristic-based optimizers:
 - Apply greedily rules that always improve
 - Typically: push selections down
 - Very limited: no longer used today
- Cost-based optimizers
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan

The Search Space

Complete plans

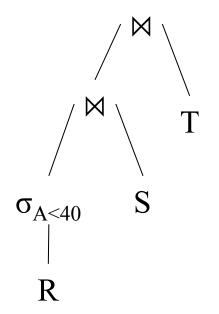
Bottom-up plans

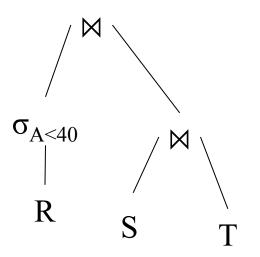
Top-down plans

Complete Plans

```
R(A,B)
S(B,C)
T(C,D)
```

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40



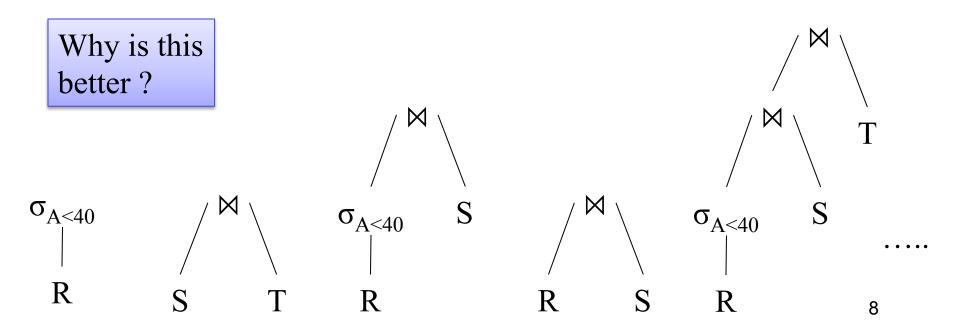


Why is this search space inefficient?

Bottom-up Partial Plans

R(A,B) S(B,C) T(C,D)

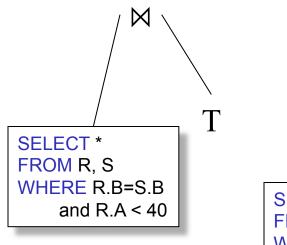
SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

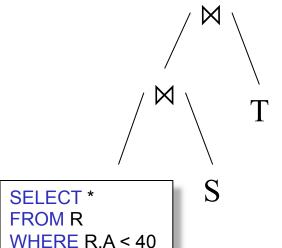


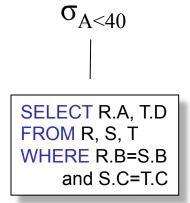
Top-down Partial Plans

```
R(A,B)
S(B,C)
T(C,D)
```

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40







• • • •

Plan Enumeration Algorithms

- Dynamic programming (in class)
 - Classical algorithm [1979]
 - Limited to joins: join reordering algorithm
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down

Dynamic Programming

Originally proposed in System R [1979]

Only handles single block queries:

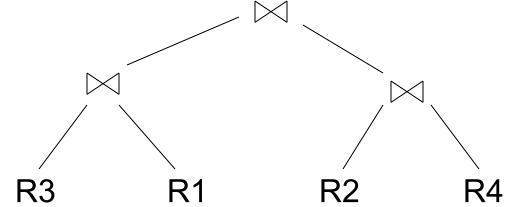
```
\begin{array}{ccc} \textbf{SELECT list} \\ \textbf{FROM} & R1, \dots, Rn \\ \textbf{WHERE cond}_1 \ AND \ cond_2 \ AND \ \dots \ AND \ cond_k \end{array}
```

Heuristics: selections down, projections up

- Search space = join trees
- Algebraic laws = commutativity, associativity
- Algorithm = dynamic programming ☺

Join Trees

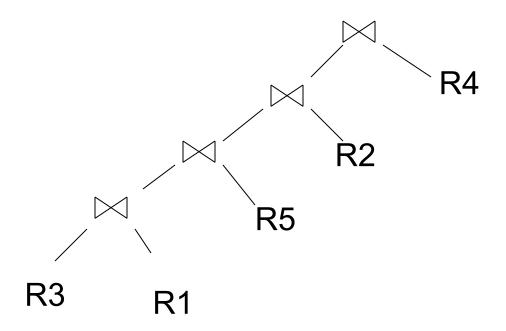
- R1 ⋈ R2 ⋈ ⋈ Rn
- Join tree:



- A plan = a join tree
- A partial plan = a subtree of a join tree

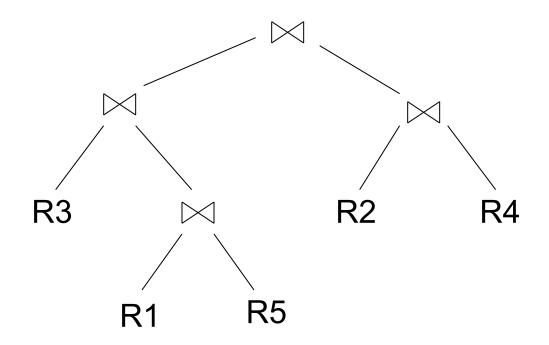
Types of Join Trees

Left deep:



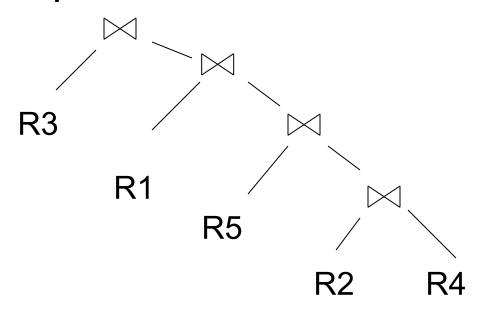
Types of Join Trees

• Bushy:



Types of Join Trees

Right deep:



 $\begin{array}{ll} \textbf{SELECT list} \\ \textbf{FROM} & R1, \dots, Rn \\ \textbf{WHERE cond}_1 \ AND \ cond_2 \ AND \ \dots AND \ cond_k \end{array}$

Dynamic Programming

Join ordering:

- Given: a query R1 ⋈ R2 ⋈ . . . ⋈ Rn
- Find optimal order

 Assume we have a function cost() that gives us the cost of every join tree

 $\begin{array}{ll} \textbf{SELECT list} \\ \textbf{FROM} & R1, \dots, Rn \\ \textbf{WHERE cond}_1 \, \textbf{AND cond}_2 \, \textbf{AND} \, \dots \, \textbf{AND cond}_k \end{array}$

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q) = the estimated size of Q
 - Plan(Q) = a best plan for Q
 - Cost(Q) = the estimated cost of that plan

SELECT list FROM R1,..., Rn WHERE $cond_1$ AND $cond_2$ AND ... AND $cond_k$

- **Step 1**: For each {R_i}, set:
 - $-\operatorname{Size}(\{R_i\}) = B(R_i)$
 - $Plan(\{R_i\}) = R_i$
 - $\text{Cost}(\{R_i\}) = (\text{cost of scanning } R_i)$

 $\begin{array}{ll} \textbf{SELECT list} \\ \textbf{FROM} & R1, ..., Rn \\ \textbf{WHERE cond}_1 \, \textbf{AND cond}_2 \, \textbf{AND} \, \dots \, \textbf{AND cond}_k \end{array}$

- Step 2: For each Q ⊆{R₁, ..., R_n}
 involving i relations:

 What's a reasonable
 - Size(Q) = estimate it recursively estimate?
 - For every pair of subqueries Q', Q''
 s.t. Q = Q' ∪ Q''
 compute cost(Plan(Q') ⋈ Plan(Q''))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan

 $\begin{array}{ll} \textbf{SELECT list} \\ \textbf{FROM} & R1, \dots, Rn \\ \textbf{WHERE cond}_1 \, \textbf{AND cond}_2 \, \textbf{AND} \, \dots \, \textbf{AND cond}_k \end{array}$

Dynamic Programming

• **Step 3**: Return Plan({R₁, ..., R_n})

To illustrate, ad-hoc cost model (from the book ☺):

Cost(P₁ ⋈ P₂) = Cost(P₁) + Cost(P₂) + size(intermediate results for P₁, P₂)

Cost of a scan = 0

SELECT *
FROM R, S, T, U
WHERE cond₁ AND cond₂ AND . . .

Example

- RMSMTMU
- Assumptions:

All join selectivities = 1%

$$T(R \bowtie S) = 0.01*T(R)*T(S)$$

 $T(S \bowtie T) = 0.01*T(S)*T(T)$
etc.

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

T(R) = 2000 T(S) = 5000 T(T) = 3000 T(U) = 1000

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5M	30k	(TU)S
RSTU	30M	60k +50k=110k	(RT)(SU)

Reducing the Search Space

- Restriction 1: only left linear trees (no bushy)
 Why?
- Restriction 2: no trees with cartesian product

 $R(A,B) \bowtie S(B,C) \bowtie T(C,D)$

Plan: $(R(A,B)\bowtie T(C,D))\bowtie S(B,C)$ has a cartesian product. Most query optimizers will not consider it

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Rule-Based Optimizers

- Extensible collection of rules
 Rule = Algebraic law with a direction
- Algorithm for firing these rules
 Generate many alternative plans, in some order
 - Prune by cost

- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm for each operator
 - How much memory do we have ?
 - Are the input operand(s) sorted ?
- Access path selection for base tables
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Access Path Selection

- Access path: a way to retrieve tuples from a table
 - A file scan
 - An index plus a matching selection condition
- Index matches selection condition if it can be used to retrieve just tuples that satisfy the condition
 - Example: Supplier(sid,sname,scity,sstate)
 - B+-tree index on (scity,sstate)
 - matches scity='Seattle'
 - does not match sid=3, does not match sstate='WA'

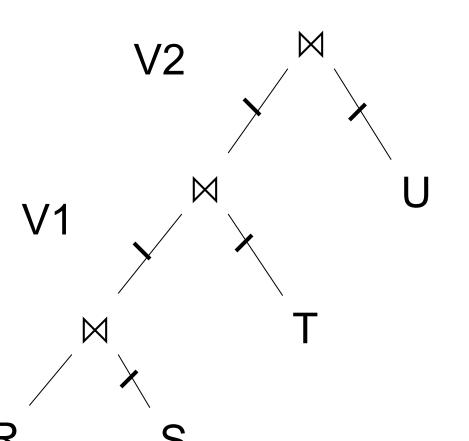
Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > 300 ∧ scity='Seattle'
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?
- We should pick the most selective access path

Access Path Selectivity

- Access path selectivity is the number of pages retrieved if we use this access path
 - Most selective retrieves fewest pages
- As we saw earlier, for equality predicates
 - Selection on equality: $\sigma_{a=v}(R)$
 - V(R, a) = # of distinct values of attribute a
 - 1/V(R,a) is thus the reduction factor
 - Clustered index on a: cost B(R)/V(R,a)
 - Unclustered index on a: cost T(R)/V(R,a)
 - (we are ignoring I/O cost of index pages for simplicity)

Materialize Intermediate Results Between Operators



```
HashTable ← S
repeat
         read(R, x)
         y \leftarrow join(HashTable, x)
         write(V1, y)
HashTable ← T
repeat read(V1, y)
         z \leftarrow join(HashTable, y)
         write(V2, z)
HashTable ← U
repeat read(V2, z)
         u \leftarrow join(HashTable, z)
         write(Answer, u)
```

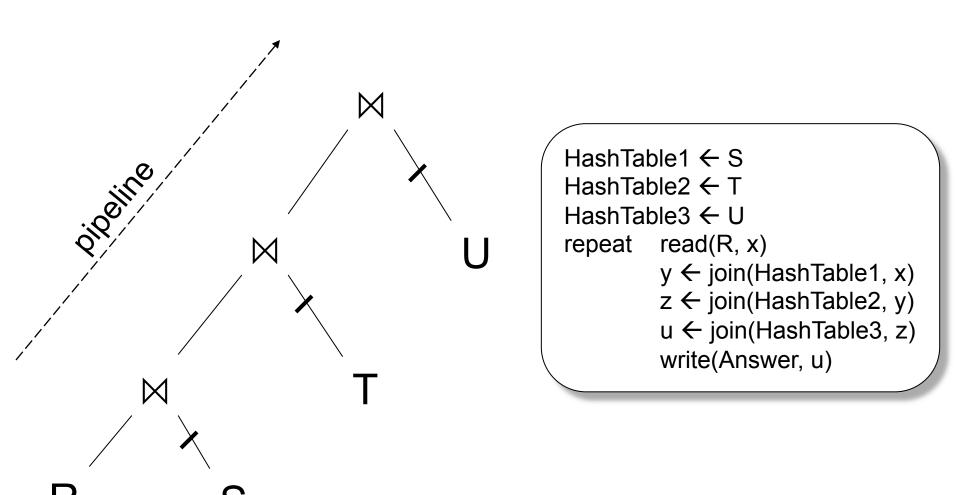
Materialize Intermediate Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan?
 - Cost =
- How much main memory do we need?
 - M =

Pipeline Between Operators



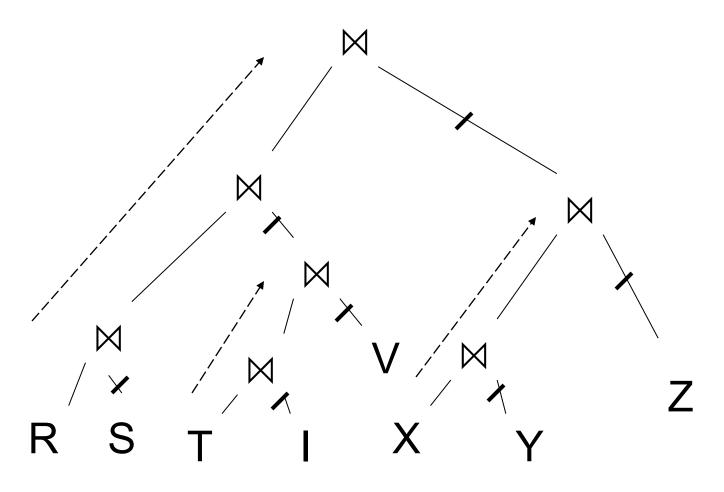
Pipeline Between Operators

Question in class

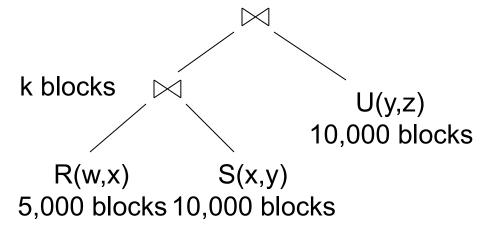
Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan?
 - Cost =
- How much main memory do we need?
 - M =

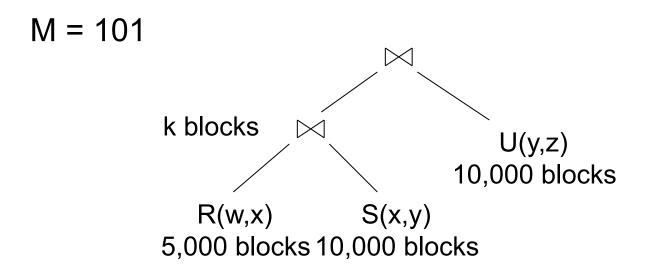
Pipeline in Bushy Trees



Logical plan is:



Main memory M = 101 buffers



Naïve evaluation:

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

M = 101

k blocks

U(y,z)

10,000 blocks

R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
- Cost so far: 3B(R) + 3B(S)

M = 101

k blocks

U(y,z)

10,000 blocks

R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Continuing:

- How large are the 50 buckets on y? Answer: k/50.
- If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

M = 101

k blocks

U(y,z)

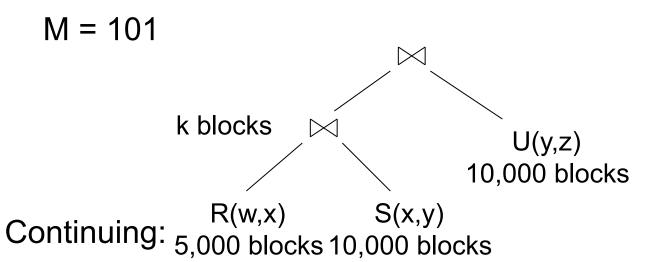
10,000 blocks

R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Continuing:

- If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk
 - Each bucket has size k/50 <= 100</p>
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k



- If k > 5000 then materialize instead of pipeline
- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k