Lecture 26b:
Supplementary slides for Pig Latin

Friday, Dec 3, 2010

Outline

Based entirely on Pig Latin: A not-so-foreign
language for data processing, by Olston,
Reed, Srivastava, Kumar, and Tomkins,
2008

Quiz section tomorrow: in CSE 403
(this 1s CSE, don’t go to EE1)

Why ?

« Map-reduce is a low-level programming
envinroment

 In most applications need more complex
queries

 Pig-latin accepts higher level queries,
translates them to sequences of map-reduce

Pig-Latin Overview

Data model = loosely typed nested relations
Query model = a sql-like, dataflow language

Execution model:
— Option 1: run locally on your machine

— Option 2: compile into sequence of map/reduce, run
on a cluster supporting Hadoop

Malin idea: use Optl to debug, Opt2 to execute,

Example

* Input: a table of urls:

(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each
category

 Return the answers only for categories with
sufficiently many such pages

First in SQL...

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 10°

...then in Pig-Latin

gooC

_urls =FILTER urls BY pagerank > 0.2

grou

0s = GROUP good_urls BY category

big_groups = FILTER groups

BY COUNT(good_urls) > 10°

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank)

Types In Pig-Latin

Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), ...}

Maps: we will try not to use these

Types In Pig-Latin
Bags can be nested !
- (@, {1,4.3}), (e’ 1), ((d, {2,2,5,3,2})}

Tuple components can be referenced by
number

« §0, §1, $2, ...

T =

(o]

(‘lakers’, 1)
“iPod’, 2
II)

} | “age’ —;2&])

Let fields of tuple t be called £1, £2, £3

Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 | ‘age’ — 20 |
- (‘lakers’)
Projection £2.%0 { (¢iPod’)
Map Lookup f3# age’ 20
Function Evaluation SUM(f2.$1) 1+2=23
Conditional f3#‘age’ >187 .
. dult’
Expression ‘adult’: ‘minor’ adt
, ‘lak S |
Flattening FLATTEN(£2) =2

“iPod’, 2

oading data

 Input data = FILES!
— Heard that before ?

 The LOAD command parses an input file
Into a bag of records

* Both parser (=“deserializer”) and output
type are provided by user

11

oading data

queries = LOAD ‘query log.txt’
USING myLoad()
AS (userID, queryString, timeStamp)

12

oading data

« USING userfuction() --Is optional
— Default deserializer expects tab-delimited file
« AS type — Is optional

— Default 1s a record with unnamed fields; refer
to them as $0, $1, ...

* The return value of LOAD is just a handle
to a bag

— The actual reading is done in pull mode, or
parallelized

13

FOREACH

expanded_queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

14

FOREACH

expanded_queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

15

queries:

(userld, queryString, timestamp) ~
FOREACH queries GENERATE (alice, {Hgﬁzﬁ;ﬁgﬁ:g} :»)
(alice, lakers, 1) expandQuery{queryString) y

(bob, iPod, 3)

(without flattening) > (1Pod nano) A
beb, ~(iPod shuffle)

-

{alice, lakers rumors)
(alice, lakers news)
{(bob, 1Pod nanc)
(bob, iPod shuffle)

with flattenin

16

FLATTEN

Note that it is NOT a first class function !
(that’s one thing I don’t like about Pig-latin)

e Firstclass FLATTEN:
— FLATTEN({{2,3}{5}{}{4.5,6}}) ={2,3,5,4,5,6}
— Type: {{T}} 2> {T}
* Pig-latin FLATTEN
— FLATTEN({4,5,6}) =4,5, 6
— Type: {T}>T,T,T,...,T 272772

17

FILTER

Remove all queries from Web bots:

real queries = FILTER queries BY userld neq ‘bot’

Better: use a complex UDF to detect \Web bots:

real _queries = FILTER queries
BY NOT isBot(userld)

18

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

19

results:
(queryString, url, rank)

revenue:
(queryString, adSlot, amount)

JOIN

20

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =
FOREACH grouped_revenue
GENERATE queryString,
SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)} 21

Simple Map-Reduce
input : {(fieldl, field2, field3,)}

map_result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map_result BY $0

output = FOREACH key groups
GENERATE reduce($1)

map _result: {(al, a2,a3,...)}
key groups : {(al, {(a2,a3,.. .)}H}

22

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What Is the output type In general ?

23

Co-Group

grouped data: (group, results, revenue)
results: - -

(queryString, url, rank) lakers. J Clakers, nba.com, 1) (lakers, top, 5@
*) (lakers, espn.com, Z2) " (lakers, side, 28)
COGROUP

A

(lakers, nba.com, 1)
{lakers, espn.com, 2 _ _

) -
(kings, nhl.com, 1) :
(kings, nba.com, 2) —f (kings, {(k?"gh nhl.com, 1) 'y Ckings, top, 3&}})

— T

A

(kings, nba.com, 2) (kings, side, 1@)

— S

revenue:
(queryString, adSlot, amount)

{lakers, top, 587 —
(lakers, side, EE}_
(kings, top, 39@)
(kings, side, 187

Is this an Inner join, or an outer join ?

24

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-

sults and revenue information for a query string at a time,

and outputs a bag of urls and the revenue attributed to them.
25

Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN

Asking for Output: STORE

STORE query_revenues INTO "myoutput'
USING myStore();

Meaning: write query revenues to the file ‘myoutput’

27

Implementation

Over Hadoop !

Parse query:

— Everything between LOAD and STORE -> one
logical plan

Logical plan = sequence of Map/Reduce

opS

All statements between two (CO)GROUPs

-> one Map/Reduce op

28

Implementation

map, reduce, map, reduce;map,,, reduce,
logd | » filter » goOup | ------------ » COQHOUp ----p l:ugr:nm —>
Ly 4 G Cia

load

29

