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Lecture 26b: 

Supplementary slides for Pig Latin 

Friday, Dec 3, 2010 



Outline 

Based entirely on Pig Latin: A not-so-foreign 

language for data processing, by Olston, 

Reed, Srivastava, Kumar, and Tomkins, 

2008 

 

 

Quiz section tomorrow: in CSE 403 

(this is CSE, don‟t go to EE1) 
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Why ? 

• Map-reduce is a low-level programming 

envinroment 

• In most applications need more complex 

queries 

• Pig-latin accepts higher level queries, 

translates them to sequences of map-reduce 
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Pig-Latin Overview 

• Data model = loosely typed nested relations 

• Query model = a sql-like, dataflow language 

 

• Execution model: 

– Option 1: run locally on your machine 

– Option 2: compile into sequence of map/reduce, run 

on a cluster supporting Hadoop 

 

• Main idea: use Opt1 to debug, Opt2 to execute 4 



Example 

• Input: a table of urls:  

 (url, category, pagerank) 

• Compute the average pagerank of all 

sufficiently high pageranks, for each 

category 

• Return the answers only for categories with 

sufficiently many such pages 
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First in SQL… 
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SELECT category, AVG(pagerank) 

FROM urls 

WHERE pagerank > 0.2 

GROUP By category 

HAVING COUNT(*) > 106 



…then in Pig-Latin 
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good_urls = FILTER urls BY pagerank > 0.2 

groups = GROUP good_urls BY category 

big_groups = FILTER groups  

      BY COUNT(good_urls) > 106 

output = FOREACH big_groups GENERATE 

    category, AVG(good_urls.pagerank) 



Types in Pig-Latin 

• Atomic: string or number, e.g. „Alice‟ or 55 

 

• Tuple: („Alice‟, 55, „salesperson‟) 

 

• Bag: {(„Alice‟, 55, „salesperson‟), 

           („Betty‟,44, „manager‟), …} 

 

• Maps: we will try not to use these 8 



Types in Pig-Latin 

Bags can be nested ! 

 

• {(„a‟, {1,4,3}), („c‟,{ }), („d‟, {2,2,5,3,2})} 

 

Tuple components can be referenced by 

number 

• $0, $1, $2, … 
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Loading data 

• Input data = FILES ! 

– Heard that before ? 

 

• The LOAD command parses an input file 

into a bag of records 

• Both parser  (=“deserializer”) and output 

type are provided by user 
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Loading data 
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queries = LOAD „query_log.txt‟ 

         USING myLoad( ) 

         AS (userID, queryString, timeStamp) 



Loading data 

• USING userfuction( )  -- is optional 

– Default deserializer expects tab-delimited file 

• AS type – is optional 

– Default is a record with unnamed fields; refer 

to them as $0, $1, … 

• The return value of LOAD is just a handle 

to a bag 

– The actual reading is done in pull mode, or 

parallelized 13 



FOREACH 
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expanded_queries =  

 FOREACH queries 

 GENERATE userId, expandQuery(queryString) 

expandQuery( ) is  a UDF that produces likely expansions 

Note: it returns a bag, hence expanded_queries is a  nested bag 



FOREACH 
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expanded_queries =  

 FOREACH queries 

 GENERATE userId,  

                     flatten(expandQuery(queryString)) 

Now we get a flat collection 
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FLATTEN 

Note that it is NOT a first class function ! 

(that‟s one thing I don‟t like about Pig-latin) 

• First class FLATTEN: 

– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6} 

– Type: {{T}}  {T} 

• Pig-latin FLATTEN 

– FLATTEN({4,5,6}) = 4, 5, 6 

– Type: {T}  T, T, T, …, T       ????? 
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FILTER 

18 

real_queries =  FILTER queries BY userId neq „bot‟ 

Remove all queries from Web bots: 

real_queries =  FILTER queries  

                      BY NOT isBot(userId) 

Better: use a complex UDF to detect Web bots: 



JOIN 
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join_result = JOIN results BY queryString 

                            revenue BY queryString 

results:       {(queryString, url, position)} 

revenue:     {(queryString, adSlot, amount)} 

join_result : {(queryString, url, position, adSlot, amount)} 
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GROUP BY 
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grouped_revenue = GROUP revenue BY queryString 

query_revenues = 

       FOREACH grouped_revenue 

       GENERATE queryString, 

                     SUM(revenue.amount) AS totalRevenue 

revenue:     {(queryString, adSlot, amount)} 

grouped_revenue: {(queryString, {(adSlot, amount)})} 

query_revenues: {(queryString, totalRevenue)} 



Simple Map-Reduce 
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map_result = FOREACH input  

                      GENERATE FLATTEN(map(*)) 

key_groups = GROUP map_result BY $0 

output = FOREACH key_groups  

           GENERATE reduce($1) 

input  : {(field1, field2, field3, . . . .)} 

map_result :  {(a1, a2, a3, . . .)} 

key_groups : {(a1, {(a2, a3, . . .)})} 



Co-Group 
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grouped_data =  

        COGROUP results BY queryString, 

                            revenue BY queryString; 

results: {(queryString, url, position)} 

revenue: {(queryString, adSlot, amount)} 

grouped_data: {(queryString, results:{(url, position)},  

                                                revenue:{(adSlot, amount)})} 

What is the output type in general ? 



Co-Group 
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Is this an inner join, or an outer join ? 



Co-Group 
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url_revenues = FOREACH grouped_data  

        GENERATE 

                 FLATTEN(distributeRevenue(results, revenue)); 

grouped_data: {(queryString, results:{(url, position)},  

                                                revenue:{(adSlot, amount)})} 

distributeRevenue is a UDF that accepts search re- 

sults and revenue information for a query string at a time, 

and outputs a bag of urls and the revenue attributed to them. 



Co-Group v.s. Join 
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grouped_data = COGROUP results BY queryString, 

                                        revenue BY queryString; 

join_result = FOREACH grouped_data 

                     GENERATE FLATTEN(results),  

                                           FLATTEN(revenue); 

grouped_data: {(queryString, results:{(url, position)},  

                                                revenue:{(adSlot, amount)})} 

Result is the same as JOIN 



Asking for Output: STORE 
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STORE query_revenues INTO `myoutput' 

                  USING myStore(); 

Meaning: write query_revenues to the file „myoutput‟ 



Implementation 

• Over Hadoop ! 

• Parse query: 

– Everything between LOAD and STORE  one 

logical plan 

• Logical plan  sequence of Map/Reduce 

ops 

• All statements between two (CO)GROUPs 

 one Map/Reduce op 
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Implementation 
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