
1

Lecture 26b:

Supplementary slides for Pig Latin

Friday, Dec 3, 2010

Outline

Based entirely on Pig Latin: A not-so-foreign

language for data processing, by Olston,

Reed, Srivastava, Kumar, and Tomkins,

2008

Quiz section tomorrow: in CSE 403

(this is CSE, don‟t go to EE1)
2

Why ?

• Map-reduce is a low-level programming

envinroment

• In most applications need more complex

queries

• Pig-latin accepts higher level queries,

translates them to sequences of map-reduce

3

Pig-Latin Overview

• Data model = loosely typed nested relations

• Query model = a sql-like, dataflow language

• Execution model:

– Option 1: run locally on your machine

– Option 2: compile into sequence of map/reduce, run

on a cluster supporting Hadoop

• Main idea: use Opt1 to debug, Opt2 to execute 4

Example

• Input: a table of urls:

 (url, category, pagerank)

• Compute the average pagerank of all

sufficiently high pageranks, for each

category

• Return the answers only for categories with

sufficiently many such pages

5

First in SQL…

6

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

…then in Pig-Latin

7

good_urls = FILTER urls BY pagerank > 0.2

groups = GROUP good_urls BY category

big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE

 category, AVG(good_urls.pagerank)

Types in Pig-Latin

• Atomic: string or number, e.g. „Alice‟ or 55

• Tuple: („Alice‟, 55, „salesperson‟)

• Bag: {(„Alice‟, 55, „salesperson‟),

 („Betty‟,44, „manager‟), …}

• Maps: we will try not to use these 8

Types in Pig-Latin

Bags can be nested !

• {(„a‟, {1,4,3}), („c‟,{ }), („d‟, {2,2,5,3,2})}

Tuple components can be referenced by

number

• $0, $1, $2, …

9

10

Loading data

• Input data = FILES !

– Heard that before ?

• The LOAD command parses an input file

into a bag of records

• Both parser (=“deserializer”) and output

type are provided by user

11

Loading data

12

queries = LOAD „query_log.txt‟

 USING myLoad()

 AS (userID, queryString, timeStamp)

Loading data

• USING userfuction() -- is optional

– Default deserializer expects tab-delimited file

• AS type – is optional

– Default is a record with unnamed fields; refer

to them as $0, $1, …

• The return value of LOAD is just a handle

to a bag

– The actual reading is done in pull mode, or

parallelized 13

FOREACH

14

expanded_queries =

 FOREACH queries

 GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions

Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

15

expanded_queries =

 FOREACH queries

 GENERATE userId,

 flatten(expandQuery(queryString))

Now we get a flat collection

16

FLATTEN

Note that it is NOT a first class function !

(that‟s one thing I don‟t like about Pig-latin)

• First class FLATTEN:

– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}

– Type: {{T}}  {T}

• Pig-latin FLATTEN

– FLATTEN({4,5,6}) = 4, 5, 6

– Type: {T}  T, T, T, …, T ?????
17

FILTER

18

real_queries = FILTER queries BY userId neq „bot‟

Remove all queries from Web bots:

real_queries = FILTER queries

 BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

JOIN

19

join_result = JOIN results BY queryString

 revenue BY queryString

results: {(queryString, url, position)}

revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

20

GROUP BY

21

grouped_revenue = GROUP revenue BY queryString

query_revenues =

 FOREACH grouped_revenue

 GENERATE queryString,

 SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}

query_revenues: {(queryString, totalRevenue)}

Simple Map-Reduce

22

map_result = FOREACH input

 GENERATE FLATTEN(map(*))

key_groups = GROUP map_result BY $0

output = FOREACH key_groups

 GENERATE reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}

key_groups : {(a1, {(a2, a3, . . .)})}

Co-Group

23

grouped_data =

 COGROUP results BY queryString,

 revenue BY queryString;

results: {(queryString, url, position)}

revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},

 revenue:{(adSlot, amount)})}

What is the output type in general ?

Co-Group

24
Is this an inner join, or an outer join ?

Co-Group

25

url_revenues = FOREACH grouped_data

 GENERATE

 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},

 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-

sults and revenue information for a query string at a time,

and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

26

grouped_data = COGROUP results BY queryString,

 revenue BY queryString;

join_result = FOREACH grouped_data

 GENERATE FLATTEN(results),

 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},

 revenue:{(adSlot, amount)})}

Result is the same as JOIN

Asking for Output: STORE

27

STORE query_revenues INTO `myoutput'

 USING myStore();

Meaning: write query_revenues to the file „myoutput‟

Implementation

• Over Hadoop !

• Parse query:

– Everything between LOAD and STORE  one

logical plan

• Logical plan  sequence of Map/Reduce

ops

• All statements between two (CO)GROUPs

 one Map/Reduce op

28

Implementation

29

