Database design: E/R diagrams and BCNF

CSE 444 section
October 14, 2010

Today

- Database design with E/R diagrams
- Functional dependencies
- Boyce-Codd normal form (BCNF)

From English to an E / R diagram

- Professors have SSN, age, rank, and specialty
- Projects have IDs, sponsors, budgets, start and end dates

From English to an E / R diagram

- Each project is managed by one professor (principal investigator)
- A professor can manage multiple projects

From English to an E/R diagram

- Each project is worked on by one or more professors
- Professors can work on multiple projects

From E/R diagram to relations

- Professor (ssn, age, rank, specialty)
- Project (pid, sponsor, start_date, end_date, budget)
- Work_on (ssn, pid)
- Manages (ssn, pid)

Integrating the many-one relation

- Professor (ssn, age, rank, specialty)
- Project (pid, sponsor, start_date, end_date, budget, ssn)
- Work_on (ssn, pid)

Example from: R. Ramakrishnan and J. Gehrke, Database Management Systems, 3rd ed.

SQL code for this database

CREATE TABLE Project (
pid INT PRIMARY KEY,
sponser INT,
start_date DATE,
end_date DATE,

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget, ssn)
- Work_in(ssn, pid)
budget FLOAT,
ssn INT REFERENCES Professor (ssn)

Today

- Database design with E/R diagrams
- Functional dependencies
- Boyce-Codd normal form (BCNF)

Garcia-Molina, problem 3.3.2 (i)

Consider a relation $\mathrm{S}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ with FDs $A \rightarrow B, B \rightarrow C$, and $B \rightarrow D$.
a. Give the nontrivial FDs that follow from the given FDs. Restrict to 1 attr on right side.
b. What are all the keys of S ?
c. What are the superkeys that aren't keys?

Garcia-Molina, problem 3.3.2 (ii)

Consider a relation $T(A, B, C, D)$ with $F D$ $A B \rightarrow C, B C \rightarrow D, C D \rightarrow A$, and $A D \rightarrow B$.
a. Give the nontrivial FDs that follow from the given FDs. Restrict to 1 attr on right side.
b. What are all the keys of S?
c. What are the superkeys that aren't keys?

Today

- Database design with E/R diagrams
- Functional dependencies
- Boyce-Codd normal form (BCNF)

What is BCNF?

A relation R is in BCNF iff:
If $A_{1}, \ldots A_{n} \rightarrow B$ is a non-trivial dependency in R, then $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey for R

Why do BCNF decompositions?

BCNF decomposition algorithm

BCNF_Decompose(R)

find X s.t.: $X \neq X^{+} \neq$[all attributes]
if (not found) then " R is in BCNF"
let $Y=X^{+}-X$
let $Z=[$ all attributes $]-X^{+}$
decompose R into $R 1(X \cup Y)$ and $R 2(X \cup Z)$ continue to decompose recursively R 1 and R 2

BCNF example: table R(A, B, C, D, E)

Consider the following FDs:

- $\mathrm{CD} \rightarrow \mathrm{E} \quad$ BAD
- $\mathrm{D} \rightarrow \mathrm{B} \quad \mathrm{BAD}$
- $\rightarrow \mathrm{CD}$

Which ones are
the bad
dependencies?

BCNF example: table $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$

Consider the following FDs:

- $C D \rightarrow E$	$B A D$
- $D \rightarrow B$	$B A D$
- A $\rightarrow C D$	

$$
\begin{gathered}
\mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) \\
{[\mathrm{CD}+=\mathrm{BCDE} \neq \mathrm{ABCDE}]}
\end{gathered}
$$

2 more BCNF decompositions

$$
\begin{aligned}
& S(A, B, C, D) \\
& \quad C \rightarrow D, C \rightarrow A, B \rightarrow C
\end{aligned}
$$

T(A, B, C, D, E)

$$
\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{DE} \rightarrow \mathrm{C}, \mathrm{~B} \rightarrow \mathrm{D}
$$

S(A,B,C,D) solution

Consider the following FDs:

- $\mathrm{C} \rightarrow \mathrm{D}, \mathrm{C}+=\mathrm{ACD}$ BAD
- $\mathrm{C} \rightarrow \mathrm{A}, \mathrm{C}+=\mathrm{ACD}$ BAD
- $B \rightarrow C, B+=A B C D$

$\mathrm{T}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) 1^{\text {st }}$ solution

$$
\begin{gathered}
\mathrm{T}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) \\
{[\mathrm{AB}+=\mathrm{ABCD} \neq \mathrm{ABCDE}]}
\end{gathered}
$$

Consider the following FDs:

- $A B \rightarrow C, A B+=A B C D \quad B A D$
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{B}+=\mathrm{BD}$

BAD

$$
\begin{gathered}
\mathrm{T} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \\
{[\mathrm{B}+=\mathrm{BD} \neq \mathrm{ABCD}]}
\end{gathered}
$$

T4(B, D)
[BCNF]

$$
\begin{aligned}
& \mathrm{T} 5(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \\
& {[\mathrm{BCNF}]}
\end{aligned}
$$

$T(A, B, C, D, E) 2^{\text {nd }}$ solution

$$
T(A, B, C, D, E)
$$

$$
[\mathrm{DE}+=\mathrm{CDE} \neq \mathrm{ABCDE}]
$$

Consider the following FDs:

- $A B \rightarrow C, A B+=A B C D \quad B A D$
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{B}+=\mathrm{BD}$

BAD

$$
\begin{gathered}
\mathrm{T} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}) \\
{[\mathrm{B}+=\mathrm{BD} \neq \mathrm{ABDE}]}
\end{gathered}
$$

$T(A, B, C, D, E) 3^{\text {rd }}$ solution

Consider the following FDs:

$$
\begin{gathered}
\mathrm{T}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) \\
{[\mathrm{B}+=\mathrm{BD} \neq \mathrm{ABCDE}]}
\end{gathered}
$$

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD}$ BAD
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{B}+=\mathrm{BD}$
BAD

$$
\begin{gathered}
\mathrm{T} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{E}) \\
{[\mathrm{AB}+=\mathrm{ABC} \neq \mathrm{ABCE}]}
\end{gathered}
$$

T3(B,D) [BCNF]

$$
\mathrm{T} 4(\mathrm{~A}, \mathrm{~B}, \mathrm{C})
$$

[BCNF]

$$
\begin{aligned}
& \mathrm{T} 5(\mathrm{~A}, \mathrm{~B}, \mathrm{E}) \\
& {[\mathrm{BCNF}]}
\end{aligned}
$$

