
1

Supplemental Notes:
Practical Aspects of

Transactions
THIS MATERIAL IS NOT COVERED

IN THE BOOK

Dan Suciu -- 444 Spring 2010

2

Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted

transaction overwrite the most recent committed
value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to

disk before the transaction commits?
•  Easiest for recovery: NO-STEAL/FORCE
•  Highest performance: STEAL/NO-FORCE

Dan Suciu -- 444 Spring 2010

3

Write-Ahead Log
•  Enables the use of STEAL and NO-FORCE
•  Log: append-only file containing log records
•  For every update, commit, or abort operation

–  Write physical, logical, physiological log record
–  Note: multiple transactions run concurrently, log records are

interleaved

•  After a system crash, use log to:
–  Redo some transaction that did commit
–  Undo other transactions that didn’t commit

Dan Suciu -- 444 Spring 2010

4

Write-Ahead Log
•  All log records pertaining to a page are written to disk

before the page is overwritten on disk

•  All log records for transaction are written to disk
before the transaction is considered committed
–  Why is this faster than FORCE policy?

•  Committed transaction: transactions whose commit
log record has been written to disk

Dan Suciu -- 444 Spring 2010

5

ARIES Method
1.  Analysis pass

–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

Dan Suciu -- 444 Spring 2010

6

ARIES Method Illustration

[Figure 3 from Franklin97]
Dan Suciu -- 444 Spring 2010

First undo and first redo log entry might be
in reverse order

7

ARIES Method Elements
•  Each page contains a pageLSN

–  Log Sequence Number of log record for latest update
to that page

–  Will serve to determine if an update needs to be redone

•  Physiological logging
–  page-oriented REDO

•  Possible because will always redo all operations in order

–  logical UNDO
•  Needed to undo only one transaction

Dan Suciu -- 444 Spring 2010

8

ARIES Data Structures
•  Active Transactions Table

–  Lists all running transactions (active transactions)
–  For each txn: lastLSN = most recent update by transaction

•  Dirty Page Table
–  Lists all dirty pages
–  For each dirty page: recoveryLSN (recLSN)= first LSN that

caused page to become dirty
•  Write Ahead Log contains log records

–  LSN, prevLSN = previous LSN for same transaction
–  other attributes

Dan Suciu -- 444 Spring 2010

ARIES Data Structures

9

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log

transID lastLSN
T100 104
T200 103

Active transactions

Dan Suciu -- 444 Spring 2010

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

10

ARIES Method Details

•  Steps under normal operations
– Add log record
– Update transactions table
– Update dirty page table
– Update pageLSN

Dan Suciu -- 444 Spring 2010

11

Checkpoints

Write into the log

•  Entire active transactions table
•  Entire dirty pages table

Dan Suciu -- 444 Spring 2010

12

1. Analysis Phase
•  Goal

–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild active transactions table and dirty pages table
–  Reprocess the log from the beginning (or checkpoint)

•  Only update the two data structures
–  Compute: firstLSN = smallest of all recoveryLSN

Dan Suciu -- 444 Spring 2010

1. Analysis Phase

Dan Suciu -- 444 Spring 2010 13

(crash) Checkpoint

Dirty pages

Active
transactions

Log

Replay
history

firstLSN

2. Redo Phase

Main principle: replay history
•  Process Log forward, starting from

firstLSN
•  Read every log record, sequentially
•  Redo actions are not recorded in the log
•  Needs the Dirty Page Table

Dan Suciu -- 444 Spring 2010 14

15

2. Redo Phase: Details

For each Log entry record LSN
•  If affected page is not in Dirty Page Table

then do not update
•  If recoveryLSN > LSN, then no update
•  Read page from disk;

If pageLSN > LSN, then no update
•  Otherwise perform update

Dan Suciu -- 444 Spring 2010

3. Undo Phase

Main principle: “logical” undo
•  Start from the end of the log, move

backwards
•  Read only affected log entries
•  Redo actions are written in the Log as special

entries: CLR (Compensating Log Records)
•  CLRs are redone, but never undone

Dan Suciu -- 444 Spring 2010 16

3. Undo Phase: Details
•  “Loser transactions” = uncommitted

transactions in Active Transactions Table
•  ToUndo = set of lastLSN of loser transactions
•  While ToUndo not empty:

–  Choose most recent (largest) LSN in ToUndo
–  If LSN = regular record: undo; write a CLR where

CLR.undoNextLSN = LSN.prevLSN
–  If LSN = CLR record: (don’t undo !)

insert CLR.undoNextLSN in ToUndo

Dan Suciu -- 444 Spring 2010 17

18

Handling Crashes during
Undo

[Figure 4 from Franklin97]

Dan Suciu -- 444 Spring 2010

19

Implementation: Locking

•  Can serve to enforce serializability

•  Two types of locks: Shared and Exclusive
•  Also need two-phase locking (2PL)

–  Rule: once transaction releases lock, cannot acquire any
additional locks!

–  So two phases: growing then shrinking

•  Actually, need strict 2PL
–  Release all locks when transaction commits or aborts

Dan Suciu -- 444 Spring 2010

20

Phantom Problem
•  A “phantom” is a tuple that is invisible during part of a

transaction execution but not all of it.

•  Example:
–  T0: reads list of books in catalog
–  T1: inserts a new book into the catalog
–  T2: reads list of books in catalog

•  New book will appear!

•  Can this occur?
•  Depends on locking details (eg, granularity of locks)
•  To avoid phantoms needs predicate locking

Dan Suciu -- 444 Spring 2010

21

Deadlocks
•  Two or more transactions are waiting for each other

to complete

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

•  Deadlock detection
–  Timeouts
–  Wait-for graph (this is what commercial systems use)

Dan Suciu -- 444 Spring 2010

22

Degrees of Isolation
•  Isolation level “serializable” (i.e. ACID)

–  Golden standard
–  Requires strict 2PL and predicate locking
–  But often too inefficient
–  Imagine there are few update operations and many long

read operations

•  Weaker isolation levels
–  Sacrifice correctness for efficiency
–  Often used in practice (often default)
–  Sometimes are hard to understand

Dan Suciu -- 444 Spring 2010

23

Degrees of Isolation

•  Four levels of isolation
–  All levels use long-duration exclusive locks
–  READ UNCOMMITTED: no read locks
–  READ COMMITTED: short duration read locks
–  REPEATABLE READ:

•  Long duration read locks on individual items
–  SERIALIZABLE:

•  All locks long duration and lock predicates

•  Trade-off: consistency vs concurrency
•  Commercial systems give choice of level

Dan Suciu -- 444 Spring 2010

24

Lock Granularity
•  Fine granularity locking (e.g., tuples)

–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks)
–  Lock escalation

Dan Suciu -- 444 Spring 2010

25

The Tree Protocol

•  An alternative to 2PL, for tree structures
•  E.g. B-trees (the indexes of choice in

databases)

•  Because
–  Indexes are hot spots!
–  2PL would lead to great lock contention

Dan Suciu -- 444 Spring 2010

26

The Tree Protocol
Rules:
•  The first lock may be any node of the tree
•  Subsequently, a lock on a node A may only be acquired if the

transaction holds a lock on its parent B
•  Nodes can be unlocked in any order (no 2PL necessary)
•  “Crabbing”

–  First lock parent then lock child
–  Keep parent locked only if may need to update it
–  Release lock on parent if child is not full

•  The tree protocol is NOT 2PL, yet ensures conflict-
serializability !

Dan Suciu -- 444 Spring 2010

27

Other Techniques
•  DB2 and SQL Server use strict 2PL
•  Multiversion concurrency control (Postgres)

–  Snapshot isolation (also available in SQL Server 2005)
–  Read operations use old version without locking

•  Optimistic concurrency control
–  Timestamp based
–  Validation based (Oracle)
–  Optimistic techniques abort transactions instead of blocking them

when a conflict occurs

Dan Suciu -- 444 Spring 2010

28

Summary

•  Transactions are a useful abstraction

•  They simplify application development

•  DBMS must be careful to maintain ACID
properties in face of
– Concurrency
– Failures

Dan Suciu -- 444 Spring 2010

