
Lecture	 04:	
Views	 and	 Constra4ns	

Monday,	 April	 5th,	 2010	

Dan Suciu -- 444 Spring 2010 1

2

Announcements and Outline

Announcements:
•  Project 1: due April 14, by 11:59pm
•  HW1: posted, April 21, by 10:30am
Today:
•  Views: Chapter 8.1, 8.2, 8.3
•  Constraints: Chapter 7.1, 7.2
•  Won’t discuss updates ! In sections…

3

Views
Views are relations, except that they may not be physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
 SELECT name, project
 FROM Employee
 WHERE department = ‘Development’

4

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Example
Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price) “virtual table”

5

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

6

Types of Views

•  Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

•  Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data
–  Indexes are materialized views (read book)

We discuss
only virtual

views in class

7

Queries Over Views:
Query Modification

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

View:

Query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

8

Queries Over Views:
Query Modification

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Modified query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

9

Queries Over Views:
Query Modification

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Modified and unnested query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

10

Another Example

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

??

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

11

Answer

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

12

Applications of Virtual Views

•  Physical data independence. E.g.
– Vertical data partitioning
– Horizontal data partitioning

•  Security
– The view reveals only what the users are

allowed to know

13

Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
 . . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

14

Vertical Partitioning

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

When do we use vertical partitioning ?

15

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

16

Vertical Partitioning

When to do this:
•  When some fields are large, and rarely accessed

–  E.g. Picture
•  In distributed databases

–  Customer personal info at one site, customer profile at
another

•  In data integration
–  T1 comes from one source
–  T2 comes from a different source

17

Horizontal Partitioning

SSN Name City Country
234234 Mary Huston USA
345345 Sue Seattle USA
345343 Joan Seattle USA
234234 Ann Portland USA
-- Frank Calgary Canada

-- Jean Montreal Canada

Customers

SSN Name City Country
234234 Mary Huston USA

CustomersInHuston

SSN Name City Country
345345 Sue Seattle USA

345343 Joan Seattle USA

CustomersInSeattle

SSN Name City Country
-- Frank Calgary Canada

-- Jean Montreal Canada

CustomersInCanada

18

Horizontal Partitioning

CREATE VIEW Customers AS
 CustomersInHuston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

19

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

20

Horizontal Partitioning

CREATE VIEW Customers AS
 (SELECT * FROM CustomersInHuston
 WHERE city = ‘Huston’)
 UNION ALL
 (SELECT * FROM CustomersInSeattle
 WHERE city = ‘Seattle’)
 UNION ALL
 . . .

Better:

21

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM CusotmersInSeattle

22

Horizontal Partitioning

Applications:
•  Optimizations:

– E.g. archived applications and active
applications

•  Distributed databases
•  Data integration

23

Views and Security

CREATE VIEW PublicCustomers	

 SELECT Name, Address	

 FROM Customers	

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Fred is
allowed to

see this

Customers:
Fred is not
allowed to

see this

24

Views and Security

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers	

 SELECT *	

 FROM Customers	

 WHERE Balance < 0	

Customers: John is
not allowed

to see >0
balances

25

Constraints in SQL

Constraints in SQL:
•  Keys, foreign keys
•  Attribute-level constraints
•  Tuple-level constraints
•  Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

simplest

Most
complex

26

Keys

OR:

CREATE TABLE Product (
 name CHAR(30) PRIMARY KEY,
 category VARCHAR(20))

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

27

Keys with Multiple Attributes

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

28

Other Keys

CREATE TABLE Product (
 productID CHAR(10),

 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (productID),
 UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

29

Foreign Key Constraints

CREATE TABLE Purchase (
 prodName CHAR(30)
 REFERENCES Product(name),

 date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

(why ?)

30

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

31

Foreign Key Constraints
•  OR

•  (name, category) must be a PRIMARY
KEY

CREATE TABLE Purchase (
 prodName CHAR(30),
 category VARCHAR(20),

 date DATETIME,
 FOREIGN KEY (prodName, category)
 REFERENCES Product(name, category)

32

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

What happens during updates ?

Types of updates:
•  In Purchase: insert/update
•  In Product: delete/update

33

What happens during updates ?

•  SQL has three policies for maintaining
referential integrity:

•  Reject violating modifications (default)
•  Cascade: after a delete/update do a delete/

update
•  Set-null set foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6

34

Constraints on Attributes and
Tuples

•  Constraints on attributes:
 NOT NULL -- obvious meaning...
 CHECK condition -- any condition !

•  Constraints on tuples
 CHECK condition

35

CREATE TABLE Purchase (
 prodName CHAR(30)
 CHECK (prodName IN

 SELECT Product.name
 FROM Product),
 date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

36

General Assertions

CREATE ASSERTION myAssert CHECK
 NOT EXISTS(

 SELECT Product.name
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 GROUP BY Product.name
 HAVING count(*) > 200)

