Lectures 6-7: Database Design

Friday, April 9 and Monday April 12, 2010

Outline

- Design theory: 3.1-3.4

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat

Student

Name	GPA	Courses
Alice	3.8	Math DB os Bob 3.7 Carol 3.9 os
Math		

Student

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

Takes

Student	Course		
Alice	Course		
Carol	Math		
Alice	DB		
Bob	DB		
Alice	OS		
Carol	OS	\quad	Course
:---			
Math			
DB			
OS			

Relational Schema Design

Conceptual Model:

Relational Model: plus FD's

Normalization:
Eliminates anomalies

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeat data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies = Joe deletes his phone number: what is his city?

Relation Decomposition

Break the relation into two:

		Name			
Fred	SSN				
				Fred	$123-45-6789$
				Joe	$987-65-4321$
Name	$\underline{S S N}$	City			
Fred	$123-45-6789$	Seattle			
Joe	$987-65-4321$	Westfield			

Anomalies have gone:

SSN	PhoneNumber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone number (how ?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
- hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}
$$

then they must also agree on the attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Formally:

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

When Does an FD Hold

Definition: $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall \mathrm{t}, \mathrm{t}^{\prime} \in \mathrm{R},\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \Rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}\right)$ R

Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but not Phone \rightarrow Position

Example

FD's are constraints:

- On some instances they hold
- On others they don't

$$
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price }
\end{aligned}
$$

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs ?

Example

name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

An Interesting Observation

If all these FDs are true:

$$
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price } \\
& \hline
\end{aligned}
$$

Then this FD also holds:

$$
\text { name, category } \rightarrow \text { price }
$$

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find all FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Is equivalent to
Splitting rule
and
Combing rule

$$
\begin{gathered}
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1} \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{2} \\
\ldots \ldots \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{m}}
\end{gathered}
$$

Armstrong's Rules (2/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~A}_{\mathrm{i}}
$$

Trivial Rule

where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

Why?

Armstrong's Rules (3/3)

Transitive Closure Rule

If

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

and

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

then

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

Why?

	A_{1}	\ldots	$\mathrm{~A}_{\mathrm{m}}$		B_{1}	\ldots	$\mathrm{~B}_{\mathrm{m}}$		C_{1}	\ldots	C_{p}	

Example (continued)

Start from the following FDs:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

Example (continued)

Answers:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	Trivial rule
5. name, category \rightarrow color	Transitivity on 4, 1
6. name, category \rightarrow category	Trivial rule
7. name, category \rightarrow color, category	Split/combine on 5, 6
8. name, category \rightarrow price	Transitivity on 3, 7

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure, $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}^{+}=$the set of attributes B

$$
\text { s.t. } A_{1}, \ldots, A_{n} \rightarrow B
$$

Example:

Closures:

$$
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price } \\
& \hline
\end{aligned}
$$

```
name }\mp@subsup{}{}{+}={\mathrm{ name, color}
    {name, category }}\mp@subsup{}{}{+}={\mathrm{ name, category, color, department, price}
    color }\mp@subsup{}{}{+}={\mathrm{ color }}\quad\mathrm{ Dan Suciu -- 444 Spring 2010

\section*{Closure Algorithm}
\(X=\{A 1, \ldots, A n\}\).
Repeat until X doesn't change do:
if \(B_{1}, \ldots, B_{n} \rightarrow C\) is a FD and \(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\) are all in X then add C to X .

Example:
\[
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price }
\end{aligned}
\]
\(\{\text { name, category }\}^{+}=\)
\{ name, category, color, department, price \}
Hence: name, category \(\rightarrow\) color, department, price

\section*{Example}

In class:

R(A,B,C,D,E,F)
\[
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
\]

Compute \(\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}\),
Compute \(\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}\),

\section*{Why Do We Need Closure}
- With closure we can find all FD's easily
- To check if \(\mathrm{X} \rightarrow \mathrm{A}\)
- Compute \(\mathrm{X}^{+}\)
- Check if \(\mathrm{A} \in \mathrm{X}^{+}\)

\section*{Using Closure to Infer ALL FDs}

Example:
\[
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}
\]

Step 1: Compute \(\mathrm{X}^{+}\), for every X :
\[
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}, \\
& \mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}+=\mathrm{ABCD} \text { (no need to compute }- \text { why } ? \text { ) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
\]

Step 2: Enumerate all FD's \(\mathrm{X} \rightarrow \mathrm{Y}\), s.t. \(\mathrm{Y} \subseteq \mathrm{X}^{+}\)and \(\mathrm{X} \cap \mathrm{Y}=\varnothing\) : \(\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B}\)

\section*{Another Example}
- Enrollment(student, major, course, room, time) student \(\rightarrow\) major
major, course \(\rightarrow\) room
course \(\rightarrow\) time

What else can we infer ? [in class, or at home]

\section*{Keys}
- A superkey is a set of attributes \(A_{1}, \ldots, A_{n}\) s.t. for any other attribute \(B\), we have \(A_{1}, \ldots, A_{n} \rightarrow B\)
- A key is a minimal superkey
- I.e. set of attributes which is a superkey and for which no subset is a superkey

\section*{Computing (Super)Keys}
- Compute \(\mathrm{X}^{+}\)for all sets X
- If \(\mathrm{X}^{+}=\)all attributes, then X is a key
- List only the minimal X's

\section*{Example}

\section*{Product(name, price, category, color)}
\[
\begin{aligned}
& \text { name, category } \rightarrow \text { price } \\
& \text { category } \rightarrow \text { color } \\
& \hline
\end{aligned}
\]

What is the key?

\section*{Example}

\section*{Product(name, price, category, color)}

\section*{name, category \(\rightarrow\) price category \(\rightarrow\) color}

What is the key?
(name, category) \(+=\) name, category, price, color
Hence (name, category) is a key

\section*{Examples of Keys}

Enrollment(student, address, course, room, time)
```

student }->\mathrm{ address
room, time }->\mathrm{ course
student, course }->\mathrm{ room, time

```
(find keys at home)

\section*{Eliminating Anomalies}

Main idea:
- \(X \rightarrow A\) is OK if \(X\) is a (super)key
- \(\mathrm{X} \rightarrow \mathrm{A}\) is not OK otherwise

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline Name & SSN & PhoneNumber & City \\
\hline Fred & \(123-45-6789\) & \(206-555-1234\) & Seattle \\
\hline Fred & \(123-45-6789\) & \(206-555-6543\) & Seattle \\
\hline Joe & \(987-65-4321\) & \(908-555-2121\) & Westfield \\
\hline Joe & \(987-65-4321\) & \(908-555-1234\) & Westfield \\
\hline
\end{tabular}

SSN \(\rightarrow\) Name, City

What the key?
\{SSN, PhoneNumber\}
Hence SSN \(\rightarrow\) Name, City is a "bad" dependency

\section*{Key or Keys ?}

Can we have more than one key?

Given \(R(A, B, C)\) define FD's s.t. there are two or more keys

\section*{Key or Keys ?}

\section*{Can we have more than one key?}

Given \(R(A, B, C)\) define FD's s.t. there are two or more keys
\[
\begin{array}{|l|l}
\mathrm{AB} \rightarrow \mathrm{C} \\
\mathrm{BC} \rightarrow \mathrm{~A}
\end{array} \quad \text { or } \quad \begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~B} \rightarrow \mathrm{AC}
\end{aligned}
\]
what are the keys here ?
Can you design FDs such that there are three keys?

\section*{Boyce-Codd Normal Form}

A simple condition for removing anomalies from relations:

\section*{A relation R is in BCNF if:}

If \(A_{1}, \ldots, A_{n} \rightarrow B\) is a non-trivial dependency
in \(R\), then \(\left\{A_{1}, \ldots, A_{n}\right\}\) is a superkey for \(R\)

In other words: there are no "bad" FDs

Equivalently:
\(\forall \mathrm{X}\), either \(\left(\mathrm{X}^{+}=\mathrm{X}\right) \quad\) or \(\quad\left(\mathrm{X}^{+}=\right.\)all attributes \()\)

\section*{BCNF Decomposition Algorithm}

\section*{repeat}
choose \(A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}\) that violates \(\operatorname{BNCF}\)
split \(R\) into \(R_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)\) and \(R_{2}\left(A_{1}, \ldots, A_{m}\right.\), [others]) continue with both \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\)
until no more violations


Is there a
2-attribute
relation that is not in BCNF?

In practice, we have a better algorithm (coming \({ }^{42}\) up)

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline Name & SSN & PhoneNumber & City \\
\hline Fred & \(123-45-6789\) & \(206-555-1234\) & Seattle \\
\hline Fred & \(123-45-6789\) & \(206-555-6543\) & Seattle \\
\hline Joe & \(987-65-4321\) & \(908-555-2121\) & Westfield \\
\hline Joe & \(987-65-4321\) & \(908-555-1234\) & Westfield \\
\hline
\end{tabular}

\section*{SSN \(\rightarrow\) Name, City}

What the key?
\(\{\) SSN, PhoneNumber \(\} \quad \begin{aligned} & \text { use SSN } \rightarrow \text { Name, City } \\ & \text { to split }\end{aligned}\)

\section*{Example}
\begin{tabular}{|l|l|l|}
\hline Name & \(\underline{\text { SSN }}\) & City \\
\hline \multirow{2}{*}{ SSN \(\rightarrow\) Name, City } \\
\hline Fred & \(123-45-6789\) & Seattle \\
\hline Joe & \(987-65-4321\) & Westfield \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline SSN & PhoneNumber \\
\hline \(123-45-6789\) & \(206-555-1234\) \\
\hline \(123-45-6789\) & \(206-555-6543\) \\
\hline \(987-65-4321\) & \(908-555-2121\) \\
\hline \(987-65-4321\) & \(908-555-1234\) \\
\hline
\end{tabular}

Let's check anomalies:
- Redundancy?
- Update?
-Delete ?

\section*{Example Decomposition}

Person(name, SSN, age, hairColor, phoneNumber) SSN \(\rightarrow\) name, age age \(\rightarrow\) hairColor

Decompose in BCNF (in class):

\section*{BCNF Decomposition Algorithm}

\section*{BCNF_Decompose(R)}
find X s.t.: \(\mathrm{X} \neq \mathrm{X}^{+} \neq[\)all attributes \(]\)
if (not found) then " \(R\) is in BCNF"
let \(\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}\)
let \(\mathrm{Z}=\) [all attributes \(]-\mathrm{X}^{+}\)
decompose R into \(\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})\) and \(\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})\) continue to decompose recursively R1 and R2

Find X s.t.: \(\mathrm{X} \neq \mathrm{X}^{+} \neq[\)all attributes \(]\)

\section*{Example BCNF Decomposition}

Person(name, SSN, age, hairColor, phoneNumber)
SSN \(\rightarrow\) name, age
age \(\rightarrow\) hairColor
Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P
age \(+=\) age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

What are the keys?

R(A,B,C,D)

\section*{Example}
\[
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
\]


What happens if in R we first pick \(\mathrm{B}^{+}\)? \(\mathrm{Or} \mathrm{AB}^{+}{ }_{48}\) ?

\section*{Decompositions in General}

\(\mathrm{R}_{1}=\) projection of R on \(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\) \(\mathrm{R}_{2}=\) projection of R on \(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}\)

\section*{Theory of Decomposition}
- Sometimes it is correct:
\begin{tabular}{|c|c|c|}
\hline Name & Price & Category \\
\hline Gizmo & 19.99 & Gadget \\
\hline OneClick & 24.99 & Camera \\
\hline Gizmo & 19.99 & Camera \\
\hline
\end{tabular}


Lossless decomposition

\section*{Incorrect Decomposition}
- Sometimes it is not:


\section*{Decompositions in General}

\[
\text { If } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}
\]

Then the decomposition is lossless
Note: don't need \(A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots, C_{p}\)```

