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Lecture 9-10: Recovery 

Friday, April 16 and Monday, April 19, 2010 
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Outline 

•  Disks 13.2 
•  Undo logging 17.2 
•  Redo logging 17.3 
•  Redo/undo 17.4 
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Project 2 
What you will learn: 
•  Connect to db and call SQL from java (read 9.6) 
•  Dependent joins 
•  Integrate two databases 
•  Transactions 

Amount of work: 
•  20 SQL queries + 180 lines Java ≈ 12 hours (?) 3 



Project 2 

•  Database 1 = IMDB on SQL Server 

•  Database 2 = you create a CUSTOMER db 
on postgres 
– Customers 
– Rentals 
– Plans 

4 Dan Suciu -- 444 Spring 2010  



5 

The Mechanics of Disk 
Mechanical characteristics: 
•  Rotation speed (5400RPM) 
•  Number of platters (1-30) 
•  Number of tracks (<=10000) 
•  Number of bytes/track(105) 

Platters 

Spindle 
Disk head 

Arm movement 

Arm assembly 

Tracks 

Sector 

Cylinder 

Unit of read or write: 
       disk block 
Once in memory: 
        page 
Typically: 4k or 8k or 16k 
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RAID 
Several disks that work in parallel 
•  Redundancy: use parity to recover from disk failure 
•  Speed: read from several disks at once 

Various configurations (called levels): 
•  RAID 1 = mirror 
•  RAID 4 = n disks + 1 parity disk 
•  RAID 5 = n+1 disks, assign parity blocks round robin 
•  RAID 6 = “Hamming codes” 
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Disk Access Characteristics 
•  Disk latency = time between when command is issued and 

when data is in memory 

•  Disk latency = seek time + rotational latency 
–  Seek time = time for the head to reach cylinder 

•  10ms – 40ms 
–  Rotational latency = time for the sector to rotate 

•  Rotation time = 10ms 
•  Average latency = 10ms/2 

•  Transfer time = typically 40MB/s 
•  Disks read/write one block at a time 
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Buffer Management in a DBMS 

•  Data must be in RAM for DBMS to operate on it! 

•  Table of <frame#, pageid> pairs is maintained 

DB 

MAIN MEMORY 

DISK 

disk page 

free frame 

Page Requests from Higher Levels 

BUFFER POOL 

choice of frame dictated 
by replacement policy 

READ 
WRITE 

INPUT 
OUTUPT 
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Buffer Manager 

Page replacement policies 

•  LRU = expensive 
•  Clock algorithm = cheaper alternative 

Both work well in OS, but not always in DB 
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Least Recently Used (LRU) 
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P5, P2, P8, P4, P1, P9, P6, P3, P7 
Read(P6) 

P6, P5, P2, P8, P4, P1, P9, P3, P7 

Input(P10) 

P10, P6, P5, P2, P8, P4, P1, P9, P3 

Read(P10) 



Buffer Manager 

DBMS build their own buffer manager and don’t 
rely on the OS 

•  Better control for transactions 
– Force pages to disk 
– Pin pages in the buffer 

•  Tweaks to LRU/clock algorithms for 
specialized accesses, s.a. sequential scan 
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Transaction Management and the 
Buffer Manager 

The transaction manager operates on the 
buffer pool 

•  Recovery: ‘log-file write-ahead’, then 
careful policy about which pages to force to 
disk 

•  Concurrency control: locks at the page 
level, multiversion concurrency control 
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Transaction Management 

Two parts: 

•  Recovery from crashes:  ACID 
•  Concurrency control:      ACID 

Both operate on the buffer pool 
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Recovery 
Type of Crash Prevention 

Wrong data entry Constraints and 
Data cleaning 

Disk crashes Redundancy:  
e.g. RAID, archive 

Fire, theft, bankruptcy… Remote backups 

System failures: 
e.g. power 

DATABASE 
RECOVERY 
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Main Idea for Recovery 

•  Write-ahead log =  
– A file that records every single action of all 

running transactions 

– After a crash, transaction manager reads the log 
and finds out exactly what the transactions did 
or did not 
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Transactions 

•  Assumption: the database is composed of 
elements 
– Usually 1 element = 1 block 
– Can be smaller (=1 record) or larger (=1 

relation) 
•  Assumption: each transaction reads/writes 

some elements 
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Primitive Operations of 
Transactions 

•  READ(X,t) 
–  copy element X to transaction local variable t 

•  WRITE(X,t) 
–  copy transaction local variable t to element X 

•  INPUT(X) 
–  read element X to memory buffer 

•  OUTPUT(X) 
–  write element X to disk 
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Example 

Atomicity: 
BOTH A and B 
are multiplied by 2 
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START TRANSACTION 
READ(A,t);  
t := t*2; 
WRITE(A,t);  
READ(B,t);  
t := t*2; 
WRITE(B,t) 
COMMIT; 
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Action t Mem A Mem B Disk A Disk B 

INPUT(A) 8 8 8 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 

INPUT(B) 16 16 8 8 8 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 

Buffer pool Disk Transaction 

READ(A,t); t := t*2; WRITE(A,t);  
READ(B,t); t := t*2; WRITE(B,t) 
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Action t Mem A Mem B Disk A Disk B 

INPUT(A) 8 8 8 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 

INPUT(B) 16 16 8 8 8 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 
Crash ! 

Crash occurs after OUTPUT(A), before OUTPUT(B) 
We lose atomicity 
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The Log 

•  An append-only file containing log records 
•  Multiple transactions run concurrently, log 

records are interleaved 
•  After a system crash, use log to: 

– Redo some transaction that didn’t commit 
– Undo other transactions that didn’t commit 

•  Three kinds of logs: undo, redo, undo/redo 
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Undo Logging 
Log records 
•  <START T>  

–  transaction T has begun 
•  <COMMIT T>  

–  T has committed 
•  <ABORT T> 

–  T has aborted 
•  <T,X,v> 

–  T has updated element X, and its old value was v 
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Action T Mem A Mem B Disk A Disk B Log 

<START T> 

INPUT(A) 8 8 8 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,8> 

INPUT(B) 16 16 8 8 8 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,8> 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 

COMMIT <COMMIT T> 
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Action T Mem A Mem B Disk A Disk B Log 

<START T> 

INPUT(A) 8 8 8 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,8> 

INPUT(B) 16 16 8 8 8 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,8> 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 

COMMIT <COMMIT T> 

Crash ! 

WHAT DO WE DO ? 
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Action T Mem A Mem B Disk A Disk B Log 

<START T> 

INPUT(A) 8 8 8 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,8> 

INPUT(B) 16 16 8 8 8 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,8> 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 

COMMIT <COMMIT T> 

Crash ! 
WHAT DO WE DO ? 
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After Crash 

•  In the first example: 
–  We UNDO both changes: A=8, B=8 
–  The transaction is atomic, since none of its actions has 

been executed 

•  In the second example 
–  We don’t undo anything 
–  The transaction is atomic, since both it’s actions have 

been executed 
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Undo-Logging Rules 

U1: If T modifies X, then <T,X,v> must be 
written to disk before OUTPUT(X) 

U2: If T commits, then OUTPUT(X) must be 
written to disk before <COMMIT T> 

•  Hence: OUTPUTs are done early, before 
the transaction commits 
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Action T Mem A Mem B Disk A Disk B Log 

<START T> 

INPUT(A) 8 8 8 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,8> 

INPUT(B) 16 16 8 8 8 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,8> 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 

COMMIT <COMMIT T> 
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Recovery with Undo Log 

After system’s crash, run recovery manager  
•  Idea 1. Decide for each transaction T 

whether it is completed or not 
– <START T>….<COMMIT T>….    = yes 
– <START T>….<ABORT T>…….   = yes 
– <START T>………………………   = no 

•  Idea 2. Undo all modifications by 
incomplete transactions 
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Recovery with Undo Log 

Recovery manager: 
•  Read log from the end; cases: 

<COMMIT T>:  mark T as completed 
<ABORT T>: mark T as completed 
<T,X,v>: if T is not completed 

   then write X=v to disk 
      else ignore 

<START T>: ignore 
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Recovery with Undo Log 
… 
… 
<T6,X6,v6> 
… 
… 
<START T5> 
<START T4> 
<T1,X1,v1> 
<T5,X5,v5> 
<T4,X4,v4> 
<COMMIT T5> 
<T3,X3,v3> 
<T2,X2,v2> 

Question1: Which updates 
are undone ? 

Question 2: 
What happens if  there 
is a second crash, 
during recovery ? 

Question 3: 
How far back 
do we need to 
read in the log ? 

crash 
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Recovery with Undo Log 

•  Note: all undo commands are 
idempotent 
– If we perform them a second time, no 

harm is done 
– E.g. if there is a system crash during 

recovery, simply restart recovery from 
scratch 
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Recovery with Undo Log 

When do we stop reading the log ? 
•  We cannot stop until we reach the 

beginning of the log file 
•  This is impractical 

Instead: use checkpointing 
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Checkpointing 

Checkpoint the database periodically 
•  Stop accepting new transactions 
•  Wait until all current transactions complete 
•  Flush log to disk 
•  Write a <CKPT> log record, flush 
•  Resume transactions 
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Undo Recovery with 
Checkpointing 

… 
… 
<T9,X9,v9> 
… 
… 
(all completed) 
<CKPT> 
<START T2> 
<START T3 
<START T5> 
<START T4> 
<T1,X1,v1> 
<T5,X5,v5> 
<T4,X4,v4> 
<COMMIT T5> 
<T3,X3,v3> 
<T2,X2,v2> 

During recovery, 
Can stop at first 
<CKPT> 

  transactions T2,T3,T4,T5 

   other transactions 
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Nonquiescent Checkpointing 

•  Problem with checkpointing: database 
freezes during checkpoint 

•  Would like to checkpoint while database is 
operational 

•  Idea: nonquiescent checkpointing 

Quiescent = being quiet, still, or at rest; inactive 
Non-quiescent = allowing transactions to be active 
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Nonquiescent Checkpointing 

•  Write a <START CKPT(T1,…,Tk)> 
where T1,…,Tk are all active transactions 

•  Continue normal operation 
•  When all of T1,…,Tk have completed, write 

<END CKPT> 
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Undo Recovery with 
Nonquiescent Checkpointing 

… 
… 
… 
… 
… 
… 
<START CKPT T4, T5, T6> 
… 
… 
… 
… 
<END CKPT> 
… 
… 
… 

During recovery, 
Can stop at first 
<CKPT> 

  T4, T5, T6, plus 
  later transactions 

   earlier transactions plus 
   T4, T5, T6 

   later transactions 
Q: do we need  
<END CKPT> ? 



Implementing ROLLBACK 

•  A transaction ends in COMMIT or ROLLBACK 
•  Use the undo-log to implement ROLLBCACK 

•  LSN = Log Seqence Number 
•  Log entries for the same transaction are linked, 

using the LSN’s 
•  Read log in reverse, using LSN pointers 
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Redo Logging 

Log records 
•  <START T> = transaction T has begun 
•  <COMMIT T> = T has committed 
•  <ABORT T>= T has aborted 
•  <T,X,v>= T has updated element X, and its 

new value is v 

Dan Suciu -- 444 Spring 2010  



41 

Action T Mem A Mem B Disk A Disk B Log 

<START T> 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,16> 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,16> 

<COMMIT T> 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 
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Redo-Logging Rules 

R1: If T modifies X, then both <T,X,v> and 
<COMMIT T> must be written to disk 
before OUTPUT(X) 

•  Hence: OUTPUTs are done late 
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Action T Mem A Mem B Disk A Disk B Log 

<START T> 

READ(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,16> 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,16> 

<COMMIT T> 

OUTPUT(A) 16 16 16 16 8 

OUTPUT(B) 16 16 16 16 16 
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Recovery with Redo Log 

After system’s crash, run recovery manager  
•  Step 1. Decide for each transaction T 

whether we need to redo or not 
– <START T>….<COMMIT T>….    = yes 
– <START T>….<ABORT T>…….    = no 
– <START T>………………………   = no 

•  Step 2. Read log from the beginning, redo 
all updates of committed transactions 
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Recovery with Redo Log 
<START T1> 
<T1,X1,v1> 
<START T2> 
<T2, X2, v2> 
<START T3> 
<T1,X3,v3> 
<COMMIT T2> 
<T3,X4,v4> 
<T1,X5,v5> 
… 
… 
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Nonquiescent Checkpointing 

•  Write a <START CKPT(T1,…,Tk)> 
where T1,…,Tk are all active transactions 

•  Flush to disk all blocks of committed 
transactions (dirty blocks), while continuing 
normal operation 

•  When all blocks have been flushed, write 
<END CKPT> 
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Redo Recovery with 
Nonquiescent Checkpointing 

… 
<START T1> 
… 
<COMMIT T1> 
… 
<START T4> 
… 
<START CKPT T4, T5, T6> 
… 
… 
… 
… 
<END CKPT> 
… 
… 
… 
<START CKPT T9, T10> 
… 

Step 1: look for 
The last 
<END CKPT> 

Step 2: redo 
from the 
earliest 
start of 
T4, T5, T6 
ignoring 
transactions 
committed 
earlier 

All OUTPUTs  
of T1 are guaranteed 
to be on disk 

Cannot 
use 



48 

Comparison Undo/Redo 
•  Undo logging: 

–  OUTPUT must be done early 
–  If <COMMIT T> is seen, T definitely has written all its data to 

disk (hence, don’t need to redo) – inefficient 
•  Redo logging 

–  OUTPUT must be done late 
–  If <COMMIT T> is not seen, T definitely has not written any of its 

data to disk (hence there is not dirty data on disk, no need to undo) 
– inflexible 

•  Would like more flexibility on when to OUTPUT: undo/
redo logging (next) 
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Undo/Redo Logging 

Log records, only one change 
•  <T,X,u,v>= T has updated element X, its 

old value was u, and its new value is v 

Dan Suciu -- 444 Spring 2010  



50 

Undo/Redo-Logging Rule 

UR1: If T modifies X, then <T,X,u,v> must 
be written to disk before OUTPUT(X) 

Note: we are free to OUTPUT early or late 
relative to <COMMIT T> 
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Action T Mem A Mem B Disk A Disk B Log 

<START T> 

REAT(A,t) 8 8 8 8 

t:=t*2 16 8 8 8 

WRITE(A,t) 16 16 8 8 <T,A,8,16> 

READ(B,t) 8 16 8 8 8 

t:=t*2 16 16 8 8 8 

WRITE(B,t) 16 16 16 8 8 <T,B,8,16> 

OUTPUT(A) 16 16 16 16 8 

<COMMIT T> 

OUTPUT(B) 16 16 16 16 16 

Can OUTPUT whenever we want: before/after COMMIT 
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Recovery with Undo/Redo Log 

After system’s crash, run recovery manager  
•  Redo all committed transaction, top-down 
•  Undo all uncommitted transactions, bottom-up 
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Recovery with Undo/Redo Log 
<START T1> 
<T1,X1,v1> 
<START T2> 
<T2, X2, v2> 
<START T3> 
<T1,X3,v3> 
<COMMIT T2> 
<T3,X4,v4> 
<T1,X5,v5> 
… 
… 
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Granularity of the Log 

•  Physical logging: element = physical page 
•  Logical logging: element = data record 

•  What are the pros and cons ? 
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Granularity of the Log 

•  Modern DBMS: 

•  Physical logging for the REDO part 
– Efficiency 

•  Logical logging for the UNDO part 
– For ROLLBACKs 
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