Lecture 9-10: Recovery

Friday, April 16 and Monday, April 19, 2010

Dan Suciu -- 444 Spring 2010

Outline

Disks 13.2
Undo logging 17.2
Redo logging 17.3

Redo/undo 17.4

Dan Suciu -- 444 Spring 2010

Project 2

What you will learn:

* Connect to db and call SQL from java (read 9.6)
* Dependent joins

 Integrate two databases

 Transactions

Amount of work:
* 20 SQL queries + 180 lines Java = 12 hours (?),

Project 2

» Database 1 = IMDB on SQL Server

» Database 2 = you create a CUSTOMER db
on postgres
— Customers
— Rentals

— Plans

Dan Suciu -- 444 Spring 2010

The Mechanics of Disk

Mechanical characteristics:
* Rotation speed (5400RPM) Disk head

« Number of platters (1-30) p

e Number of tracks (<=10000)
e Number of bytes/track(10°)

Cylinder

J

y

Unit of read or write: <:Arm movem
disk block

Once 1n memory:
page

Typically: 4k or 8k or 16k Arm assembly

ent

———

SN

—

_—Spindle

Tracks

Sector

Platters

RAID

Several disks that work in parallel
 Redundancy: use parity to recover from disk failure
« Speed: read from several disks at once

Various configurations (called levels):

« RAID 1 = mirror

 RAID 4 =n disks + 1 parity disk

« RAID 5 =n+1 disks, assign parity blocks round robin
« RAID 6 = “Hamming codes”

Not required for exam, but interesting reading in the book

Disk Access Characteristics

* Disk latency = time between when command 1s 1ssued and
when data is in memory

« Disk latency = seek time + rotational latency
— Seek time = time for the head to reach cylinder
* 10ms —40ms
— Rotational latency = time for the sector to rotate
* Rotation time = 10ms
» Average latency = 10ms/2

« Transfer time = typically 40MB/s

Disks read/write one block at a time

Large gap between disk I/0 and memory =» Buffer pool

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL

N

disk page

S

free frame

choice of frame dictated
DB by replacement policy

e Data must be in RAM for DBMS to operate on it!

 Table of <frame#, pageid> pairs is maintained

Dan Suciu -- 444 Spring 2010 8

Buffer Manager

Page replacement policies

* LRU = expensive
* Clock algorithm = cheaper alternative

Both work well in OS, but not always in DB

Dan Suciu -- 444 Spring 2010

Least Recently Used (LRU)

(PS, P2, P8, P4, P1, P9.(P6) P3, P7

C_Read(P6) =

P6, P5, P2, P8, P4, P1, P9, P3, X

CReap0) - L npueelo)

P10, P6, P5, P2, P8, P4, P1, P9, P3

Dan Suciu -- 444 Spring 2010

10

Buffer Manager

DBMS build their own buffer manager and don’t
rely on the OS

» Better control for transactions
— Force pages to disk
— Pin pages in the buffer

* Tweaks to LRU/clock algorithms for
specialized accesses, s.a. sequential scan

Dan Suciu -- 444 Spring 2010 11

Transaction Management and the
Buffer Manager
The transaction manager operates on the
buffer pool

* Recovery: ‘log-file write-ahead’, then
careful policy about which pages to force to
disk

* Concurrency control: locks at the page
level, multiversion concurrency control

12

Transaction Management

Two parts:

* Recovery from crashes: ACID

* Concurrency control: ACID

Both operate on the buffer pool

Dan Suciu -- 444 Spring 2010

13

Recovery

Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

Fire, theft, bankruptcy... Remote backups

System failures: DATABASE
€.g. power RECOVERY

14

Main Idea for Recovery

* Write-ahead log =

— A file that records every single action of all
running transactions

— After a crash, transaction manager reads the log
and finds out exactly what the transactions did
or did not

Dan Suciu -- 444 Spring 2010 15

Transactions

* Assumption: the database 1s composed of
elements

— Usually 1 element = 1 block

— Can be smaller (=1 record) or larger (=1
relation)

* Assumption: each transaction reads/writes
some elements

Dan Suciu -- 444 Spring 2010

16

Primitive Operations of

Transactions
READ(X.t)

— copy element X to transaction local variable t
WRITE(X,t)

— copy transaction local variable t to element X

INPUT(X)

— read element X to memory buffer

OUTPUT(X)

— write element X to disk

Dan Suciu -- 444 Spring 2010

17

Example

START TRANSACTION

READ(A,t);

t:=t*2; Atomicity:

WRITE(A.1); BOTH A and B
- are multiplied by 2

READ(B,t);

t.=t*2;

WRITE(B,t)

COMMIT;

I7GII JOUVICh T T OpPTITES =9I TYU 18

READ(A,}); t := t*2; WRITE(A,1);
READ(B,1); t := t*2; WRITE(B, 1)

Transaction Buffer pool Disk
— - -
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 g
READ(A,1) 8 8 g 8

t=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 g 8
READ(B,t) 8 16 8 8 8

f=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 g
OUTPUT(A) 16 16 16 16 j% o
OUTPUT(B) 16 16 16 16

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity

The Log

An append-only file containing log records

Multiple transactions run concurrently, log
records are interleaved

After a system crash, use log to:
— Redo some transaction that didn’t commit
— Undo other transactions that didn’t commit

Three kinds of logs: undo, redo, undo/redo

Dan Suciu -- 444 Spring 2010

21

Undo Logging

Log records
« <START T>

— transaction T has begun

« <COMMIT T>

— T has committed

o <ABORT T>
— T has aborted

o« <T,X,v>
— T has updated element X, and its o/d value was v

Dan Suciu -- 444 Spring 2010

22

Action T Mem A | Mem B Disk A Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

23

Action T Mem A | Mem B Disk A Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) | 16 16 16 16 g <W L~ |
OUTPUT(B) 16 16 16 16 1 6§_\E£ili}/lﬂ!f
COMMIT <COMMIT T>

24

WHAT DO WE DO ?

Action T Mem A | Mem B Disk A Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <CO T>
Crash !

WHAT DO WE DO ?

After Crash

 In the first example:

— We UNDO both changes: A=8, B=8

— The transaction is atomic, since none of its actions has
been executed

* In the second example
— We don’t undo anything

— The transaction 1s atomic, since both it’s actions have
been executed

Dan Suciu -- 444 Spring 2010

26

Undo-Logging Rules

Ul: If T modifies X, then <T.X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be
written to disk before <COMMIT T>

 Hence: OUTPUTSs are done early, before
the transaction commits

Dan Suciu -- 444 Spring 2010 27

Action T Mem A | Mem B Disk A Disk B Log
<START T>

INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 /< <T,A,8> >
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t=t*2 16 | 1l | 38 g 8

WRITE(B,t) / 16 16 8 8 /(<T,B,8> >
\O/UTPURAE 16 16 | 16— 16 8

maz/ 16 16 16 16
COMMIT ‘QCOMMIT ﬁ

5%

Recovery with Undo Log

After system’s crash, run recovery manager

e Idea 1. Decide for each transaction T
whether 1t 1s completed or not

— <START T>...<COMMIT T>.... =vyes
~ <START T>...<ABORT T>....... = yes
—<START T>...o.... = no

* Idea 2. Undo all modifications by
incomplete transactions

Dan Suciu -- 444 Spring 2010

29

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed

<T,X,v>:1f T 1s not completed
then write X=v to disk
else ignore

<START T>: ignore

Dan Suciu -- 444 Spring 2010

30

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,vl>
<T35,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>

<T2,X2,v2>

Questionl: Which updates
are undone ?

Question 2:

What happens 1f there
1S a second crash,
during recovery ?

Question 3:
How far back
do we need to

read in the log ? 3

Recovery with Undo Log

 Note: all undo commands are
idempotent

— If we perform them a second time, no
harm is done

— E.g. 1f there 1s a system crash during
recovery, simply restart recovery from
scratch

Dan Suciu -- 444 Spring 2010 32

Recovery with Undo Log

When do we stop reading the log ?

* We cannot stop until we reach the
beginning of the log file

* This 1s impractical
Instead: use checkpointing

Dan Suciu -- 444 Spring 2010

33

Checkpointing

Checkpoint the database periodically

* Stop accepting new transactions

* Wait until all current transactions complete
* Flush log to disk

* Write a <CKPT> log record, flush

e Resume transactions

Dan Suciu -- 444 Spring 2010 34

Undo Recovery with

During recovery,
Can stop at first
<CKPT>

Checkpointing

<T19,X9,v9>

(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,vl>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

> other transactions

> transactions T2,1T3,T4,T5

) 35

Nonquiescent Checkpointing

* Problem with checkpointing: database
freezes during checkpoint

* Would like to checkpoint while database 1s
operational

* Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

36

Nonquiescent Checkpointing

 Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active transactions

* Continue normal operation

 When all of T1,...,Tk have completed, write
<END CKPT>

Dan Suciu -- 444 Spring 2010 37

Undo Recovery with
Nonquiescent Checkpointing

\ earlier transactions plus
During recovery, N T4, T5, T6

Can St0p at ﬁI'St S ART CKPT T4, T5, T6 J
<START TS, T6>
<CKPT> \

> T4, TS5, T6, plus
later transactions

<END CKPT>)

' later transactions
Q: do we need

<END CKPT> ? 38

Implementing ROLLBACK

A transaction ends in COMMIT or ROLLBACK
Use the undo-log to implement ROLLBCACK

LSN = Log Seqence Number

Log entries for the same transaction are linked,
using the LSN’s

Read log 1n reverse, using LSN pointers

Dan Suciu -- 444 Spring 2010 39

Redo Logging

Log records

 <START T> = transaction T has begun
« <COMMIT T> =T has committed

« <ABORT T>=T has aborted

o <T,X,v>=T has updated element X, and 1ts
new value 1S v

Dan Suciu -- 444 Spring 2010

40

Action T MemA | MemB | Disk A Disk B Log
<START T>
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

41

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

 Hence: OUTPUTSs are done late

Dan Suciu -- 444 Spring 2010 42

Action T MemA | MemB | Disk A Disk B Log
<START T>
READ(A.t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,16>
///‘@OMMIT T
@TPUT(Z)t 16 16 %/}6/{
@m/m/ 16 16 16 16

43

Recovery with Redo Log

After system’s crash, run recovery manager

» Step 1. Decide for each transaction T
whether we need to redo or not

— <§N]
— <§N]

T'AR'T
[ART

— <§N]

~

—~

ART]

—~

r

r

1>
I>

r

....<COMMIT T>....
....<ABORT T>.......

= yes
= no
= no

« Step 2. Read log from the beginning, redo
all updates of committed transactions

Dan Suciu -- 444 Spring 2010

44

Recovery with Redo Log

<START T1>
<T1,X1,vl>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

Dan Suciu -- 444 Spring 2010

45

Nonquiescent Checkpointing

 Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active transactions

* Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

 When all blocks have been flushed, write
<END CKPT>

Dan Suciu -- 444 Spring 2010 46

Redo Recovery with
Nonquiescent Checkpointing

<START T1>
Step 1: look for ~COMMITT Step 2: redo
The last <START T4> from the
earliest
<END CKPT> <START CKPT T4, T5, T6>
A start of
T4, TS5, T6
All OUTPUTs . .
of T1 are guaranteed 1gnoring
to be on disk <END CKPT> transactions
committed
earlier
Cannot <START CKPT T9, T10>
use v 4

Comparison Undo/Redo

Undo logging:
— OUTPUT must be done early
— If <COMMIT T> i1s seen, T definitely has written all its data to
disk (hence, don’t need to redo) — inefficient
Redo logging
— OUTPUT must be done late

— If <COMMIT T> 1s not seen, T definitely has not written any of its

data to disk (hence there 1s not dirty data on disk, no need to undo)
— inflexible

Would like more flexibility on when to OUTPUT: undo/
redo logging (next)

Dan Suciu -- 444 Spring 2010 48

Undo/Redo Logging

Log records, only one change

« <T,X,u,v>=T has updated element X, 1ts
old value was u, and 1ts new value 1s v

Dan Suciu -- 444 Spring 2010

49

Undo/Redo-Logging Rule

URI: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

Dan Suciu -- 444 Spring 2010 50

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT51

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
* Redo all committed transaction, top-down

* Undo all uncommitted transactions, bottom-up

Dan Suciu -- 444 Spring 2010

52

Recovery with Undo/Redo Log

<START T1> i
<T1,X1,vl>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

Dan Suciu -- 444 Spring 2010

53

Granularity of the Log

* Physical logging: element = physical page
* Logical logging: element = data record

* What are the pros and cons ?

Dan Suciu -- 444 Spring 2010

54

Granularity of the Log

e Modern DBMS:

* Physical logging for the REDO part
— Efficiency

* Logical logging for the UNDO part
— For ROLLBACKSs

Dan Suciu -- 444 Spring 2010

55

