
1

Lecture 9-10: Recovery

Friday, April 16 and Monday, April 19, 2010

Dan Suciu -- 444 Spring 2010

2

Outline

•  Disks 13.2
•  Undo logging 17.2
•  Redo logging 17.3
•  Redo/undo 17.4

Dan Suciu -- 444 Spring 2010

Project 2
What you will learn:
•  Connect to db and call SQL from java (read 9.6)
•  Dependent joins
•  Integrate two databases
•  Transactions

Amount of work:
•  20 SQL queries + 180 lines Java ≈ 12 hours (?) 3

Project 2

•  Database 1 = IMDB on SQL Server

•  Database 2 = you create a CUSTOMER db
on postgres
– Customers
– Rentals
– Plans

4 Dan Suciu -- 444 Spring 2010

5

The Mechanics of Disk
Mechanical characteristics:
•  Rotation speed (5400RPM)
•  Number of platters (1-30)
•  Number of tracks (<=10000)
•  Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
 disk block
Once in memory:
 page
Typically: 4k or 8k or 16k

6

RAID
Several disks that work in parallel
•  Redundancy: use parity to recover from disk failure
•  Speed: read from several disks at once

Various configurations (called levels):
•  RAID 1 = mirror
•  RAID 4 = n disks + 1 parity disk
•  RAID 5 = n+1 disks, assign parity blocks round robin
•  RAID 6 = “Hamming codes”

Dan Suciu -- 444 Spring 2010 Not required for exam, but interesting reading in the book

7

Disk Access Characteristics
•  Disk latency = time between when command is issued and

when data is in memory

•  Disk latency = seek time + rotational latency
–  Seek time = time for the head to reach cylinder

•  10ms – 40ms
–  Rotational latency = time for the sector to rotate

•  Rotation time = 10ms
•  Average latency = 10ms/2

•  Transfer time = typically 40MB/s
•  Disks read/write one block at a time

Dan Suciu -- 444 Spring 2010 Large gap between disk I/O and memory Buffer pool

8

Buffer Management in a DBMS

•  Data must be in RAM for DBMS to operate on it!

•  Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

READ
WRITE

INPUT
OUTUPT

Dan Suciu -- 444 Spring 2010

9

Buffer Manager

Page replacement policies

•  LRU = expensive
•  Clock algorithm = cheaper alternative

Both work well in OS, but not always in DB

Dan Suciu -- 444 Spring 2010

Least Recently Used (LRU)

Dan Suciu -- 444 Spring 2010 10

P5, P2, P8, P4, P1, P9, P6, P3, P7
Read(P6)

P6, P5, P2, P8, P4, P1, P9, P3, P7

Input(P10)

P10, P6, P5, P2, P8, P4, P1, P9, P3

Read(P10)

Buffer Manager

DBMS build their own buffer manager and don’t
rely on the OS

•  Better control for transactions
– Force pages to disk
– Pin pages in the buffer

•  Tweaks to LRU/clock algorithms for
specialized accesses, s.a. sequential scan

Dan Suciu -- 444 Spring 2010 11

12

Transaction Management and the
Buffer Manager

The transaction manager operates on the
buffer pool

•  Recovery: ‘log-file write-ahead’, then
careful policy about which pages to force to
disk

•  Concurrency control: locks at the page
level, multiversion concurrency control

13

Transaction Management

Two parts:

•  Recovery from crashes: ACID
•  Concurrency control: ACID

Both operate on the buffer pool

Dan Suciu -- 444 Spring 2010

14

Recovery
Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy:
e.g. RAID, archive

Fire, theft, bankruptcy… Remote backups

System failures:
e.g. power

DATABASE
RECOVERY

15

Main Idea for Recovery

•  Write-ahead log =
– A file that records every single action of all

running transactions

– After a crash, transaction manager reads the log
and finds out exactly what the transactions did
or did not

Dan Suciu -- 444 Spring 2010

16

Transactions

•  Assumption: the database is composed of
elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1

relation)
•  Assumption: each transaction reads/writes

some elements

Dan Suciu -- 444 Spring 2010

17

Primitive Operations of
Transactions

•  READ(X,t)
–  copy element X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to element X

•  INPUT(X)
–  read element X to memory buffer

•  OUTPUT(X)
–  write element X to disk

Dan Suciu -- 444 Spring 2010

18

Example

Atomicity:
BOTH A and B
are multiplied by 2

Dan Suciu -- 444 Spring 2010

START TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

19

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

20

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity

21

The Log

•  An append-only file containing log records
•  Multiple transactions run concurrently, log

records are interleaved
•  After a system crash, use log to:

– Redo some transaction that didn’t commit
– Undo other transactions that didn’t commit

•  Three kinds of logs: undo, redo, undo/redo

Dan Suciu -- 444 Spring 2010

22

Undo Logging
Log records
•  <START T>

–  transaction T has begun
•  <COMMIT T>

–  T has committed
•  <ABORT T>

–  T has aborted
•  <T,X,v>

–  T has updated element X, and its old value was v

Dan Suciu -- 444 Spring 2010

23

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

24

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ?

25

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ?

26

After Crash

•  In the first example:
–  We UNDO both changes: A=8, B=8
–  The transaction is atomic, since none of its actions has

been executed

•  In the second example
–  We don’t undo anything
–  The transaction is atomic, since both it’s actions have

been executed

Dan Suciu -- 444 Spring 2010

27

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be
written to disk before <COMMIT T>

•  Hence: OUTPUTs are done early, before
the transaction commits

Dan Suciu -- 444 Spring 2010

28

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

29

Recovery with Undo Log

After system’s crash, run recovery manager
•  Idea 1. Decide for each transaction T

whether it is completed or not
– <START T>….<COMMIT T>…. = yes
– <START T>….<ABORT T>……. = yes
– <START T>……………………… = no

•  Idea 2. Undo all modifications by
incomplete transactions

Dan Suciu -- 444 Spring 2010

30

Recovery with Undo Log

Recovery manager:
•  Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

 then write X=v to disk
 else ignore

<START T>: ignore

Dan Suciu -- 444 Spring 2010

31

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
What happens if there
is a second crash,
during recovery ?

Question 3:
How far back
do we need to
read in the log ?

crash

32

Recovery with Undo Log

•  Note: all undo commands are
idempotent
– If we perform them a second time, no

harm is done
– E.g. if there is a system crash during

recovery, simply restart recovery from
scratch

Dan Suciu -- 444 Spring 2010

33

Recovery with Undo Log

When do we stop reading the log ?
•  We cannot stop until we reach the

beginning of the log file
•  This is impractical

Instead: use checkpointing

Dan Suciu -- 444 Spring 2010

34

Checkpointing

Checkpoint the database periodically
•  Stop accepting new transactions
•  Wait until all current transactions complete
•  Flush log to disk
•  Write a <CKPT> log record, flush
•  Resume transactions

Dan Suciu -- 444 Spring 2010

35

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

 transactions T2,T3,T4,T5

 other transactions

36

Nonquiescent Checkpointing

•  Problem with checkpointing: database
freezes during checkpoint

•  Would like to checkpoint while database is
operational

•  Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

37

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

•  Continue normal operation
•  When all of T1,…,Tk have completed, write

<END CKPT>

Dan Suciu -- 444 Spring 2010

38

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

 T4, T5, T6, plus
 later transactions

 earlier transactions plus
 T4, T5, T6

 later transactions
Q: do we need
<END CKPT> ?

Implementing ROLLBACK

•  A transaction ends in COMMIT or ROLLBACK
•  Use the undo-log to implement ROLLBCACK

•  LSN = Log Seqence Number
•  Log entries for the same transaction are linked,

using the LSN’s
•  Read log in reverse, using LSN pointers

39 Dan Suciu -- 444 Spring 2010

40

Redo Logging

Log records
•  <START T> = transaction T has begun
•  <COMMIT T> = T has committed
•  <ABORT T>= T has aborted
•  <T,X,v>= T has updated element X, and its

new value is v

Dan Suciu -- 444 Spring 2010

41

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

42

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

•  Hence: OUTPUTs are done late

Dan Suciu -- 444 Spring 2010

43

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

44

Recovery with Redo Log

After system’s crash, run recovery manager
•  Step 1. Decide for each transaction T

whether we need to redo or not
– <START T>….<COMMIT T>…. = yes
– <START T>….<ABORT T>……. = no
– <START T>……………………… = no

•  Step 2. Read log from the beginning, redo
all updates of committed transactions

Dan Suciu -- 444 Spring 2010

45

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Dan Suciu -- 444 Spring 2010

46

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

•  Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

•  When all blocks have been flushed, write
<END CKPT>

Dan Suciu -- 444 Spring 2010

47

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are guaranteed
to be on disk

Cannot
use

48

Comparison Undo/Redo
•  Undo logging:

–  OUTPUT must be done early
–  If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to redo) – inefficient
•  Redo logging

–  OUTPUT must be done late
–  If <COMMIT T> is not seen, T definitely has not written any of its

data to disk (hence there is not dirty data on disk, no need to undo)
– inflexible

•  Would like more flexibility on when to OUTPUT: undo/
redo logging (next)

Dan Suciu -- 444 Spring 2010

49

Undo/Redo Logging

Log records, only one change
•  <T,X,u,v>= T has updated element X, its

old value was u, and its new value is v

Dan Suciu -- 444 Spring 2010

50

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

Dan Suciu -- 444 Spring 2010

51

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

52

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
•  Redo all committed transaction, top-down
•  Undo all uncommitted transactions, bottom-up

Dan Suciu -- 444 Spring 2010

53

Recovery with Undo/Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Dan Suciu -- 444 Spring 2010

Granularity of the Log

•  Physical logging: element = physical page
•  Logical logging: element = data record

•  What are the pros and cons ?

54 Dan Suciu -- 444 Spring 2010

Granularity of the Log

•  Modern DBMS:

•  Physical logging for the REDO part
– Efficiency

•  Logical logging for the UNDO part
– For ROLLBACKs

55 Dan Suciu -- 444 Spring 2010

