
1

Lecture 15: Indexes

Friday, May 7, 2010

Dan Suciu -- 444 Spring 2010

2

Outline

•  Index structures (14.1, 14.2)
•  B-trees (14.3)

Note: in old edition this is Chapter 13 instead of 14

Dan Suciu -- 444 Spring 2010

3

File Types

The data file can be one of:
•  Heap file:

– Set of records, partitioned into blocks
– Unsorted

•  Sequential file:
– Sorted according to some attribute(s) called

key

Dan Suciu -- 444 Spring 2010 Note: “key” here means something else than “primary key”

Index

•  A (possibly separate) file, that allows
fast access to records in the data file

•  The index contains (key, value) pairs:
– The key = an attribute value
– The value = one of:

•  pointer to the record secondary index
•  or the record itself primary index

4 Dan Suciu -- 444 Spring 2010 Note: “key” (aka “search key”) again means something else

5

Index Classification

•  Clustered/unclustered
–  Clustered = data file is ordered by the index’

search key
–  Unclustered = othewise

•  Primary/secondary:
–  Meaning 1: same as clustered/unclustured
–  Meaning 2:

•  Primary = is over attributes part of the primary
•  Secondary = cannot reorder data

•  Organization: B+ tree or Hash table

6

Clustered Index

•  File is sorted on the index attribute
•  Only one per table

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

7

Unclustered Index

•  Several per table

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

Clustered vs. Unclustered
Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

8 Dan Suciu -- 444 Spring 2010

9

B+ Trees

•  Search trees
•  Idea in B Trees:

– make 1 node = 1 block
•  Idea in B+ Trees:

– Make leaves into a linked list (range
queries are easier)

Dan Suciu -- 444 Spring 2010

10

•  Parameter d = the degree
•  Each node has >= d and <= 2d keys (except

root)

•  Each leaf has >=d and <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

11

B+ Tree Example

80

20 60 100 12
0

140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

Dan Suciu -- 444 Spring 2010

12

Using a B+ Tree

•  Exact key values:
– Start at the root
– Proceed down, to the leaf

•  Range queries:
– As above
– Then sequential traversal

Select name
From People
Where age = 25

Select name
From People
Where 20 <= age
 and age <= 30

Dan Suciu -- 444 Spring 2010

Index on People(age)

Which queries can use this
index ?

Dan Suciu -- 444 Spring 2010 13

Select *
From People
Where name = ‘Smith’
 and zipcode = 12345

Index on People(name, zipcode)

Select *
From People
Where name = ‘Smith’

Select *
From People
Where zipcode = 12345

14

B+ Tree Design

•  How large d ?
•  Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 byes

•  2d x 4 + (2d+1) x 8 <= 4096
•  d = 170

Dan Suciu -- 444 Spring 2010

B+ Trees in Practice

•  Typical order: 100. Typical fill-factor: 67%.
–  average fanout = 133

•  Typical capacities:
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool:
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 MBytes

15 Dan Suciu -- 444 Spring 2010

16

Insertion in a B+ Tree
Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, keep K3 too in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

17

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

18

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

19

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

20

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

21

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

22

Insertion in a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

23

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

30 40 50

24

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

25

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

40 50

26

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

40 50

27

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

40 50

28

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

50

29

Deletion from a B+ Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

Final tree

50

30

Summary on B+ Trees

•  Default index structure on most DBMS
•  Very effective at answering ‘point’

queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

Dan Suciu -- 444 Spring 2010

Indexes in Postgres

31

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clustered

The Index Selection Problem

•  Given a database schema (tables, attributes)
•  Given a “query workload”:

–  Workload = a set of (query, frequency) pairs
–  The queries may be both SELECT and updates
–  Frequency = either a count, or a percentage

•  Select a set of indexes that optimizes the
workload

32 Dan Suciu -- 444 Spring 2010
In general this is a very hard problem

Index Selection Problem 1

33

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

Dan Suciu -- 444 Spring 2010 What indexes ?

Index Selection Problem 1

34

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

Dan Suciu -- 444 Spring 2010 A: V(N) and V(P) (hash tables or B-trees)

Index Selection Problem 2

35

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Dan Suciu -- 444 Spring 2010 What indexes ?

Index Selection Problem 2

36

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

SELECT *
FROM V
WHERE N>? and N<?

Dan Suciu -- 444 Spring 2010 A: definitely V(N) (must B-tree); unsure about V(P)

Index Selection Problem 3

37

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Dan Suciu -- 444 Spring 2010 What indexes ?

Index Selection Problem 3

38

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: V(N, P)

Index Selection Problem 4

39

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

Dan Suciu -- 444 Spring 2010 What indexes ?

Index Selection Problem 4

40

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

Dan Suciu -- 444 Spring 2010 A: V(N) secondary, V(P) primary index

The Index Selection Problem

•  SQL Server:
–  Automatically, through the AutoAdmin project
–  Much acclaimed successful research project from

mid 90’s, similar ideas adopted by the other major
vendors

•  Postgres:
–  You will do it manually, part of project 3

41 Dan Suciu -- 444 Spring 2010

