Lecture 18: Query execution, optimization

Friday, May 14, 2010

Big Picture

Query processor:

- Query execution
- Query optimization

Review (1/2)

- Each operator implements this interface
- open()
- Initializes operator state
- Sets parameters such as selection condition
- get_next()
- Operator invokes get_next() recursively on its inputs
- Performs processing and produces an output tuple
- close()
- Cleans-up state

Review (2/2)

- Three algorithms for main memory join:
- Nested loop join
- Hash join

> If $|\mathrm{R}|=\mathrm{m}$ and $|\mathrm{S}|=\mathrm{n}$, what is the asymptotic
> complexity for computing $R \bowtie S$?

- Merge join

Other Main Memory Algorithms

- Grouping: $\gamma(\mathrm{R})$
- Nested loop
- Hash table

How do these algorithms work, and what are their complexities?

- Sorting
- Duplicate elimination
- Exactly the same algorithms (why?)

External Memory Algorithms

- Data is too large to fit in main memory
- Issue: disk access is 3-4 orders of magnitude slower than memory access
- Assumption: runtime dominated by \# of disk I/O's; will ignore the main memory part of the runtime

Cost Parameters

The cost of an operation = total number of I/Os result assumed to be delivered in main memory Cost parameters:

- $B(R)=$ number of blocks for relation R
- $T(R)=$ number of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})$ = number of distinct values of attribute a
- $M=$ size of main memory buffer pool, in blocks

Facts: (1) $B(R) \ll T(R)$:
(2) When a is a key, $V(R, a)=T(R)$

When a is not a key, $V(R, a) \ll T(R)$

Ad-hoc Convention

- We assume that the operator reads the data from disk
- We assume that the operator does not write the data back to disk (e.g.: pipelining)
- Thus:

Main memory join algorithms for $R \bowtie S$: Cost $=B(R)+B(S)$
Main memory grouping $\gamma(\mathrm{R})$: Cost $=\mathrm{B}(\mathrm{R})$

Sequential Scan of a Table R

- When R is clustered
- Blocks consists only of records from this table
- B(R) << T(R)
- Cost $=B(R)$
- When R is unclustered
- Its records are placed on blocks with other tables
$-B(R) \approx T(R)$
- Cost $=T(R)$

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
for each tuple r in R do for each tuple s in S do
$\mathrm{R}=$ outer relation $\mathrm{S}=$ inner relation if r and s join then output (r, s)
- Cost: $T(R) B(S)$ when S is clustered
- Cost: $T(R) T(S)$ when S is unclustered

Examples

$M=4 ; \quad R, S$ are clustered

- Example 1:
$-B(R)=1000, T(R)=10000$
$-\mathrm{B}(\mathrm{S})=2, \mathrm{~T}(\mathrm{~S})=20$
- Cost $=$?

Can you do better?

- Example 2:
$-B(R)=1000, T(R)=10000$
$-B(S)=4, T(S)=40$
- Cost $=$?

Block-Based Nested-loop Join

Why not M ?

for each (M-2) blocks bs of \mathbf{S} do
for each block br of \mathbf{R} do for each tuple sin bs for each tuple \mathbf{r} in $\mathbf{b r}$ do if "r and \mathbf{s} join" then output(\mathbf{r}, \mathbf{s})

Terminology alert: book calls S the inner relation

Block Nested-loop Join

Examples

$M=4 ; \quad R, S$ are clustered

- Example 1:
$-B(R)=1000, T(R)=10000$
$-B(S)=2, T(S)=20$
- Cost $=B(S)+B(R)=1002$
- Example 2:
$-B(R)=1000, T(R)=10000$
$-B(S)=4, T(S)=40$
- Cost $=B(S)+2 B(R)=2004$

Cost of Block Nested-loop Join

- Read S once: cost B(S)
- Outer loop runs $B(S) /(M-2)$ times, and each time need to read R : costs $B(S) B$ (R)/(M-2)

$$
\text { Cost }=B(S)+B(S) B(R) /(M-2)
$$

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
 FROM Movie
 WHERE id = '12345'

SELET *
FROM Movie
WHERE year = '1995'

$$
\begin{aligned}
& \mathrm{B}(\text { Movie })=10 \mathrm{k} \\
& \mathrm{~T}(\text { Movie })=1 \mathrm{M}
\end{aligned}
$$

What is your estimate of the I/O cost ?

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index : cost $T(R) / V(R, a)$

Index Based Selection

- Example: $\quad \begin{aligned} & \mathrm{B}(\mathrm{R})=10 \mathrm{k} \\ & \mathrm{T}(\mathrm{R})=1 \mathrm{M} \\ & \mathrm{V}(\mathrm{R}, \mathrm{a})=100\end{aligned}$

$$
\operatorname{cost} \text { of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan (assuming R is clustered):
$-B(R)=10 k I / O s$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered: $T(R) / V(R, a)=10000 \mathrm{I} / \mathrm{Os}$

Rule of thumb:

 don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!
Index Based Join

- R $\ltimes S$
- Assume S has an index on the join attribute
for each tuple r in R do
lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If unclustered: $\quad B(R)+T(R) T(S) / V(S, a)$

Operations on Very Large Tables

- Compute $\mathrm{R} \bowtie \mathrm{S}$ when each is larger than main memory
- Two methods:
- Partitioned hash join (many variants)
- Merge-join
- Similar for grouping

Partitioned Hash-based Algorithms

Idea:

- If $B(R)>M$, then partition it into smaller files: R1, R2, R3, ... Rk
- Assuming $B(R 1)=B(R 2)=\ldots=B(R k)$, we have $B(R i)=B(R) / k$
- Goal: each Ri should fit in main memory: $B(R i) \leq M$

How big can k be ?

Partitioned Hash Algorithms

- Idea: partition a relation R into $\mathrm{M}-1$ buckets, on disk
- Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

Assumption: $B(R) / M<=M$, i.e. $B(R)<=M^{2}$

Grouping

- $\gamma(R)=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R)<=M^{2}$

Partitioned Hash Join

$R \bowtie S$

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Hash-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

\div Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Dan SDisk 444 Spring Bomain memory buffers Disk

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $\min (B(R), B(S))<=M^{2}$

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, when $\mathrm{B}<\mathrm{M}^{2}$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If $B<=M^{2}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 B(R)$
- Assumption: $B(R)<=M^{2}$

Grouping

Grouping: $\gamma_{\mathrm{a}, \operatorname{sum}(\mathrm{b})}(\mathrm{R})$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how?

```
Cost \(=3 B(R)\)
Assumption: \(B(\delta(R))<=M^{2}\)
```


Merge-Join

Join $R \bowtie S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R)+B(S)<=M^{2}$

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

