
1

Lecture 18:
Query execution, optimization

Friday, May 14, 2010

Dan Suciu -- 444 Spring 2010

2

Big Picture

Query processor:

•  Query execution

•  Query optimization

Dan Suciu -- 444 Spring 2010

Dan Suciu -- 444 Spring 2010

Review (1/2)
•  Each operator implements this interface
•  open()

–  Initializes operator state
–  Sets parameters such as selection condition

•  get_next()
–  Operator invokes get_next() recursively on its inputs
–  Performs processing and produces an output tuple

•  close()
–  Cleans-up state

3

Review (2/2)

•  Three algorithms for main memory join:

– Nested loop join

– Hash join

– Merge join

Dan Suciu -- 444 Spring 2010 4

If |R| = m and |S| = n, ���
what is the asymptotic���
complexity for ���
computing R ⋈ S ?	

Other Main Memory
Algorithms

•  Grouping: γ(R)
– Nested loop
– Hash table
– Sorting

•  Duplicate elimination
– Exactly the same algorithms (why?)

Dan Suciu -- 444 Spring 2010 5

How do these algorithms ���
work, and what are their���
complexities ?	

External Memory Algorithms

•  Data is too large to fit in main memory

•  Issue: disk access is 3-4 orders of
magnitude slower than memory access

•  Assumption: runtime dominated by # of
disk I/O’s; will ignore the main memory
part of the runtime

Dan Suciu -- 444 Spring 2010 6

7

Cost Parameters
The cost of an operation = total number of I/Os
 result assumed to be delivered in main memory
Cost parameters:

•  B(R) = number of blocks for relation R
•  T(R) = number of tuples in relation R
•  V(R, a) = number of distinct values of attribute a
•  M = size of main memory buffer pool, in blocks

Dan Suciu -- 444 Spring 2010

Facts: (1) B(R) << T(R):
 (2) When a is a key, V(R,a) = T(R)
 When a is not a key, V(R,a) << T(R)

Ad-hoc Convention

•  We assume that the operator reads the
data from disk

•  We assume that the operator does not
write the data back to disk (e.g.:
pipelining)

•  Thus:

Dan Suciu -- 444 Spring 2010 8

Main memory join algorithms for R ⋈ S: Cost = B(R)+B(S) 	

Main memory grouping γ(R): Cost = B(R) 	

9

Sequential Scan of a Table R

•  When R is clustered
–  Blocks consists only of records from this table
–  B(R) << T(R)
–  Cost = B(R)

•  When R is unclustered
–  Its records are placed on blocks with other tables
–  B(R) ≈ T(R)
–  Cost = T(R)

Dan Suciu -- 444 Spring 2010

10

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S

•  Cost: T(R) B(S) when S is clustered
•  Cost: T(R) T(S) when S is unclustered

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

Dan Suciu -- 444 Spring 2010

R=outer relation	

S=inner relation	

11

Examples

M = 4; R, S are clustered
•  Example 1:

–  B(R) = 1000, T(R) = 10000
–  B(S) = 2, T(S) = 20
–  Cost = ?

•  Example 2:
–  B(R) = 1000, T(R) = 10000
–  B(S) = 4, T(S) = 40
–  Cost = ?

Dan Suciu -- 444 Spring 2010

Can you do better ?	

12

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Dan Suciu -- 444 Spring 2010

Terminology alert: book calls S the inner relation	

Why not M ?	

13

Block Nested-loop Join

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

Dan Suciu -- 444 Spring 2010

14

Examples
M = 4; R, S are clustered
•  Example 1:

–  B(R) = 1000, T(R) = 10000
–  B(S) = 2, T(S) = 20
–  Cost = B(S) + B(R) = 1002

•  Example 2:
–  B(R) = 1000, T(R) = 10000
–  B(S) = 4, T(S) = 40
–  Cost = B(S) + 2B(R) = 2004

Dan Suciu -- 444 Spring 2010

Note: T(R) and���
T(S) are irrelevant���
here.	

15

Cost of Block Nested-loop Join

•  Read S once: cost B(S)
•  Outer loop runs B(S)/(M-2) times, and

each time need to read R: costs B(S)B
(R)/(M-2)

Dan Suciu -- 444 Spring 2010

Cost = B(S) + B(S)B(R)/(M-2)	

Index Based Selection

Dan Suciu -- 444 Spring 2010 16

SELET *
FROM Movie
WHERE id = ‘12345’

Recall IMDB; assume indexes on Movie.id, Movie.year	

SELET *
FROM Movie
WHERE year = ‘1995’

B(Movie) = 10k	

T(Movie) = 1M	

What is your estimate���
of the I/O cost ?	

17

Index Based Selection

Selection on equality: σa=v(R)

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index : cost T(R)/V(R,a)

Dan Suciu -- 444 Spring 2010

18

Index Based Selection
•  Example:

•  Table scan (assuming R is clustered):
–  B(R) = 10k I/Os

•  Index based selection:
–  If index is clustered: B(R)/V(R,a) = 100 I/Os
–  If index is unclustered: T(R)/V(R,a) = 10000 I/Os

B(R) = 10k
T(R) = 1M
V(R, a) = 100

cost of σa=v(R) = ?

Dan Suciu -- 444 Spring 2010

Rule of thumb:
don’t build unclustered indexes when V(R,a) is small !

19

Index Based Join

•  R ⨝ S
•  Assume S has an index on the join

attribute
for each tuple r in R do
 lookup the tuple(s) s in S using the index

output (r,s)

Dan Suciu -- 444 Spring 2010

20

Index Based Join

Cost (Assuming R is clustered):

•  If index is clustered: B(R) + T(R)B(S)/V(S,a)
•  If unclustered: B(R) + T(R)T(S)/V(S,a)

Dan Suciu -- 444 Spring 2010

21

Operations on Very Large
Tables

•  Compute R ⋈ S when each is larger
than main memory

•  Two methods:
– Partitioned hash join (many variants)
– Merge-join

•  Similar for grouping
Dan Suciu -- 444 Spring 2010

Partitioned Hash-based
Algorithms

Idea:
•  If B(R) > M, then partition it into smaller files:

 R1, R2, R3, …, Rk

•  Assuming B(R1)=B(R2)=…= B(Rk), we have
 B(Ri) = B(R)/k

•  Goal: each Ri should fit in main memory:
 B(Ri) ≤ M

Dan Suciu -- 444 Spring 2010 22 How big can k be ?	

23

Partitioned Hash Algorithms
•  Idea: partition a relation R into M-1 buckets, on disk
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

Dan Suciu -- 444 Spring 2010 Assumption: B(R)/M <= M, i.e. B(R) <= M2

24

Grouping	

•  γ(R) = grouping and aggregation
•  Step 1. Partition R into buckets
•  Step 2. Apply γ to each bucket (may

read in main memory)

•  Cost: 3B(R)
•  Assumption: B(R) <= M2

Dan Suciu -- 444 Spring 2010

25

Partitioned Hash Join

R ⨝ S
•  Step 1:

–  Hash S into M buckets
–  send all buckets to disk

•  Step 2
–  Hash R into M buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

Dan Suciu -- 444 Spring 2010

26

Hash-Join
•  Partition both relations

using hash fn h: R tuples
in partition i will only
match S tuples in partition
i.

  Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

Dan Suciu -- 444 Spring 2010

27

Partitioned Hash Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

Dan Suciu -- 444 Spring 2010

28

External Sorting

•  Problem:
•  Sort a file of size B with memory M
•  Where we need this:

– ORDER BY in SQL queries
– Several physical operators
– Bulk loading of B+-tree indexes.

•  Will discuss only 2-pass sorting, when B < M2

Dan Suciu -- 444 Spring 2010

29

External Merge-Sort: Step 1

•  Phase one: load M bytes in memory, sort

Disk Disk

.
M

Main memory

Runs of length M bytes
Dan Suciu -- 444 Spring 2010

30

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run
•  Result: runs of length M (M – 1)≈ M2

Disk Disk

.
Input M

Input 1

Input 2
. . . .

Output

Main memory

Dan Suciu -- 444 Spring 2010 If B <= M2 then we are done

31

Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2

Dan Suciu -- 444 Spring 2010

32

Grouping

Grouping: γa, sum(b) (R)
•  Idea: do a two step merge sort, but

change one of the steps

•  Question in class: which step needs to
be changed and how ?

Dan Suciu -- 444 Spring 2010

Cost = 3B(R)
Assumption: B(δ(R)) <= M2	

33

Merge-Join

Join R ⨝ S
•  Step 1a: initial runs for R
•  Step 1b: initial runs for S
•  Step 2: merge and join

Dan Suciu -- 444 Spring 2010

34

Merge-Join

Main memory

Disk Disk

.

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
Merge-join M1 + M2 runs;
need M1 + M2 <= M

35

Two-Pass Algorithms Based
on Sorting

Join R ⨝ S
•  If the number of tuples in R matching

those in S is small (or vice versa) we
can compute the join during the merge
phase

•  Total cost: 3B(R)+3B(S)
•  Assumption: B(R) + B(S) <= M2

Dan Suciu -- 444 Spring 2010

36

Summary of External Join
Algorithms

•  Block Nested Loop: B(S) + B(R)*B(S)/M

•  Index Join: B(R) + T(R)B(S)/V(S,a)

•  Partitioned Hash: 3B(R)+3B(S);
– min(B(R),B(S)) <= M2

•  Merge Join: 3B(R)+3B(S)
– B(R)+B(S) <= M2

Dan Suciu -- 444 Spring 2010

