Lecture 19: Query Optimization (1)

May 17, 2010

Announcements

- Homework 3 due on Wednesday in class
- How is it going?
- Project 4 posted
- Due on June $2^{\text {nd }}$
- Start early!

Where We Are

- We are learning how a DBMS executes a query
- What we learned so far
- How data is stored and indexed
- Logical query plans and physical operators
- This week:
- How to select logical \& physical query plans

Query Optimization Goal

- For a query
- There exists many logical and physical query plans
- Query optimizer needs to pick a good one

Query Optimization Algorithm

- Enumerate alternative plans
- Compute estimated cost of each plan
- Compute number of I/Os
- Compute CPU cost
- Choose plan with lowest cost
- This is called cost-based optimization

Example

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity)

- Some statistics
- T(Supplier) = 1000 records
- T(Supply) = 10,000 records
$-B($ Supplier $)=100$ pages
- B(Supply) = 100 pages
- $\mathrm{V}($ Supplier,scity $)=20, \mathrm{~V}($ Supplier,state $)=10$
- $V($ Supply,pno $)=2,500$
- Both relations are clustered
- $M=10$

Physical Query Plan 1

(On the fly)

$\pi_{\text {sname }}$

Selection and project on-the-fly -> No additional cost.
(On the fly)
$\sigma_{\text {scity }}=‘$ Seattle' \wedge sstate $=‘ W A^{\prime} \wedge$ pno=2
(Block-nested loop)

Supplier
(File scan)

Total cost of plan is thus cost of join:
= B (Supplier) $+\mathrm{B}\left(\right.$ Supplier)* ${ }^{*}$ (Supply)/M
$=100+10$ * 100
$=1,100 \mathrm{I} / \mathrm{Os}$

Supply
(File scan)

V(Supplier,scity) $=20$
$V($ Supplier,state $)=10$

V (Supply,pno) $=2,500$
 Physical Query Plan 2

(On the fly)
π sname
(Sort-merge join)

Total cost
$=100+100$ * $1 / 20$ * $1 / 10$
$+100+100 * 1 / 2500(2)$
+2 (3)
+0 (4)
Total cost ≈ 204 I/Os
(Scan
(Scan
write to T2)

Supplier
(File scan)

Supply
(File scan)

Physical Query Plan 3

(On the fly) (4) $\pi_{\text {sname }}$
(On the fly)
(3) $\sigma_{\text {scity }}={ }^{\prime}$ Seattle' \wedge sstate $={ }^{\prime} W A^{\prime}$

Total cost
= 1 (1)
+4 (2)
+0 (3)

+ 0 (3)
Total cost $\approx 5 \mathrm{I} / \mathrm{Os}$
(2) sid = sid (Index nested loop)

Supplier
(Index lookup on pno) (Index lookup on sid)
Assume: clustered

Simplifications

- In the previous examples, we assumed that all index pages were in memory
- When this is not the case, we need to add the cost of fetching index pages from disk

Lessons

- Need to consider several physical plan
- even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's

Outline

- Search space (Today)
- Algorithm for enumerating query plans
- Estimating the cost of a query plan

Relational Algebra Equivalences

- Selections
- Commutative: $\sigma_{c 1}\left(\sigma_{c 2}(R)\right)$ same as $\sigma_{c 2}\left(\sigma_{c 1}(R)\right)$
- Cascading: $\sigma_{\mathrm{c} 1 \wedge \mathrm{c} 2}(\mathrm{R})$ same as $\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)$
- Projections
- Joins
- Commutative : $R \bowtie S$ same as $S \bowtie R$
- Associative: $R \bowtie(S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Left-Deep Plans and Bushy Plans

Commutativity, Associativity, Distriutivity

$$
\begin{aligned}
& R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T \\
& R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T \\
& R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T \\
& \hline
\end{aligned}
$$

$$
R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)
$$

Example

Which plan is more efficient?

 $R \bowtie(S \bowtie T)$ or $(R \bowtie S) \bowtie T ?$- Assumptions:
- Every join selectivity is 10\%
- That is: $T(R \bowtie S)=0.1$ * $T(R)$ * $T(S)$ etc.
$-B(R)=100, B(S)=50, B(T)=500$
- All joins are main memory joins
- All intermediate results are materialized

Laws involving selection:

$$
\begin{aligned}
& \sigma_{C \text { AND } C^{\prime}}(R)=\sigma_{C}\left(\sigma_{C^{\prime}}(R)\right)=\sigma_{C}(R) \cap \sigma_{C^{\prime}}(R) \\
& \sigma_{C} O_{C}(R)=\sigma_{c}(R) \cup \sigma_{C^{\prime}}(R) \\
& \sigma_{c}(R \bowtie S)=\sigma_{c}(R) \bowtie S
\end{aligned}
$$

When C involves

$$
\sigma_{c}(R-S)=\sigma_{c}(R)-S
$$

$\sigma_{c}(R-S)=\sigma_{c}(R)-S$ only attributes of R
$\sigma_{c}(R \cup S)=\sigma_{c}(R) \cup \sigma_{c}(S)$
$\sigma_{C}(R \bowtie S)=\sigma_{C}(R) \bowtie S$

Example: Simple Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)

$$
\begin{aligned}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)= \\
& \sigma_{A=5 \text { AND G=9 }}\left(R \bowtie_{D=E} S\right)=
\end{aligned} ?
$$

Laws Involving Projections

$\Pi_{\mathrm{M}}(\mathrm{R} \bowtie \mathrm{S})=\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{P}}(\mathrm{R}) \bowtie \Pi_{\mathrm{Q}}(\mathrm{S})\right)$ $\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M}(R) / *$ note that $M \subseteq N *$

- Example R(A,B,C,D), S(E, F, G)

$$
\Pi_{A, B, G}\left(R \bowtie_{\mathrm{D}=\mathrm{E}} S\right)=\Pi_{?}\left(\Pi_{?}(\mathrm{R}) \bowtie_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)
$$

Laws involving grouping and aggregation

$$
\begin{aligned}
& \delta\left(\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R})\right)=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R}) \\
& \gamma_{\mathrm{A}, \text { agg(B) }}(\delta(\mathrm{B})(\mathrm{R}))=\gamma_{\mathrm{A}, \operatorname{agg} \mathrm{~B})}(\mathrm{R}) \\
& \text { agg is "duplicate insensitive" }
\end{aligned}
$$

Which of the following are "duplicate insensitive" ? sum, count, avg, min, max

$$
\begin{aligned}
& \gamma_{A, \operatorname{agg}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)= \\
& \gamma_{A, \operatorname{agg}(D)}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, \operatorname{agg}(D)} S(C, D)\right)\right)
\end{aligned}
$$

Laws Involving Constraints

Foreign key
Product(pid, pname, price, cid) Company(cid, cname, city, state)

$$
\Pi_{\text {pid, price }}\left(\text { Product } \bowtie_{\text {cid=cid }} \text { Company }\right)=\Pi_{\text {pid, price }}(\text { Product })
$$

Need a second constraint for this law to hold. Which one?

Example

Foreign key

Product(pid, pname, price, cid) Company(cid, cname, city, state)

```
CREATE VIEW CheapProductCompany
    SELECT *
    FROM Product x, Company y
    WHERE x.cid = y.cid and x.price < 100
```

SELECT pname, price FROM CheapProductCompany

SELECT pname, price FROM Product

Laws with Semijoins

Recall the definition of a semijoin:

- $R \ltimes S=\Pi_{A 1, \ldots, A_{n}}(R \bowtie S)$
- Where the schemas are:
- Input: R(A1, ..An), S(B1,...,Bm)
- Output: T(A1, ..,An)

Laws with Semijoins

Semijoins: a bit of theory (see Database Theory, AHV)

- Given a query:

$$
Q=R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}
$$

- A semijoin reducer for Q is

$$
\begin{aligned}
& R_{i 1}=R_{i 1} \ltimes R_{j 1} \\
& R_{i 2}=R_{i 2} \ltimes R_{i 2} \\
& \dddot{R_{i p}}=R_{i 1} \ltimes R_{j p}
\end{aligned}
$$

such that the query is equivalent to:

$$
\mathrm{Q}=\mathrm{R}_{\mathrm{k} 1} \bowtie \mathrm{R}_{\mathrm{k} 2} \bowtie \ldots \bowtie R_{\mathrm{kn}}
$$

- A full reducer is such that no dangling tuples remain

Laws with Semijoins

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A reducer is:

$$
R_{1}(A, B)=R(A, B) \times S(B, C)
$$

- The rewritten query is:

$$
\mathrm{Q}=\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

Why would we do this ?

Why Would We Do This ?

- Large attributes:

$$
Q=R(A, B, D, E, F, \ldots) \bowtie S(B, C, M, K, L, \ldots)
$$

- Expensive side computations

$$
\left.Q=Y_{A, B, \text { count }}{ }^{*}\right) R(A, B, D) \bowtie \sigma_{C=\text { value }}(S(B, C))
$$

$$
\begin{aligned}
& R_{1}(A, B, D)=R(A, B, D) \ltimes \sigma_{C=\text { value }}(S(B, C)) \\
& Q=Y_{\left.A, B, \text { count }{ }^{*}\right)} R_{1}(A, B, D) \bowtie \sigma_{C=\text { value }}(S(B, C))
\end{aligned}
$$

Laws with Semijoins

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A reducer is:

$$
\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \times \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

- The rewritten query is:

$$
\mathrm{Q}=\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

Are there dangling tuples?

Laws with Semijoins

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A full reducer is:

$$
\begin{aligned}
& R_{1}(A, B)=R(A, B) \ltimes S(B, C) \\
& S_{1}(B, C)=S(B, C) \ltimes R_{1}(A, B)
\end{aligned}
$$

- The rewritten query is:

$$
Q:-R_{1}(A, B) \bowtie S_{1}(B, C)
$$

No more dangling tuples

Laws with Semijoins

- More complex example:

$$
Q=R(A, B) \bowtie S(B, C) \bowtie T(C, D, E)
$$

- A full reducer is:

$$
\begin{aligned}
& S^{\prime}(B, C):=S(B, C) \ltimes R(A, B) \\
& T^{\prime}(C, D, E):=T(C, D, E) \ltimes S(B, C) \\
& S^{\prime \prime}(B, C):=S \text { S }(B, C) \ltimes T^{\prime}(C, D, E) \\
& R^{\prime}(A, B):=R(A, B) \ltimes S^{\prime \prime}(B, C)
\end{aligned}
$$

$Q=R^{\prime}(A, B) \bowtie S^{\prime \prime}(B, C) \bowtie T^{\prime}(C, D, E)$

Laws with Semijoins

- Example:

$$
Q=R(A, B) \bowtie S(B, C) \bowtie T(A, C)
$$

- Doesn't have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is "acyclic" [Database Theory, by Abiteboul, Hull, Vianu]

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */
View:

> | CREATE VIEW DepAvgSal As (|
| :--- |
| SELECT E.did, Avg(E.Sal) AS avgsal |
| FROM Emp E |
| GROUP BY E.did) |

Query:
SELECT E.eid, E.sal FROM Emp E, Dept D, DepAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

Goal: compute only the necessary part of the view

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */
[Chaudhuri'98]

New view
uses a reducer:

New query:

CREATE VIEW LimitedAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E, Dept D WHERE E.did = D.did AND D.buget > 100k GROUP BY E.did)

> SELECT E.eid, E.sal
> FROM Emp E, Dept D, LimitedAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
[Chaudhuri'98]
DeptAvgSal(did, avgsal) /* view */
CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)
CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Example with Semijoins

New query:

SELECT P.eid, P.sal FROM PartialResult P, LimitedDepAvgSal V WHERE P.did = V.did AND P.sal > V.avgsal

Search Space Challenges

- Search space is huge!
- Many possible equivalent trees
- Many implementations for each operator
- Many access paths for each relation
- File scan or index + matching selection condition
- Cannot consider ALL plans
- Heuristics: only partial plans with "low" cost

