Lecture 20: Query Optimization (2) Wednesday, May 19, 2010

Dan Suciu -- 444 Spring 2010

Outline

- Search space
- Algorithms for enumerating query plans
- Estimating the cost of a query plan

Key Decisions

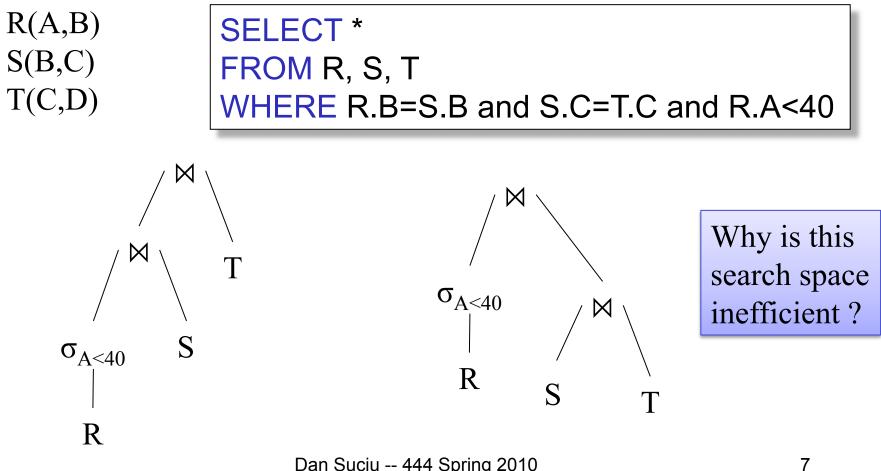
Logical plan

- What logical plans do we consider (leftdeep, bushy ?); Search Space
- Which algebraic laws do we apply, and in which context(s) ?; Optimization rules
- In what order to we explore the search space ?; Optimization algorithm

Key Decisions

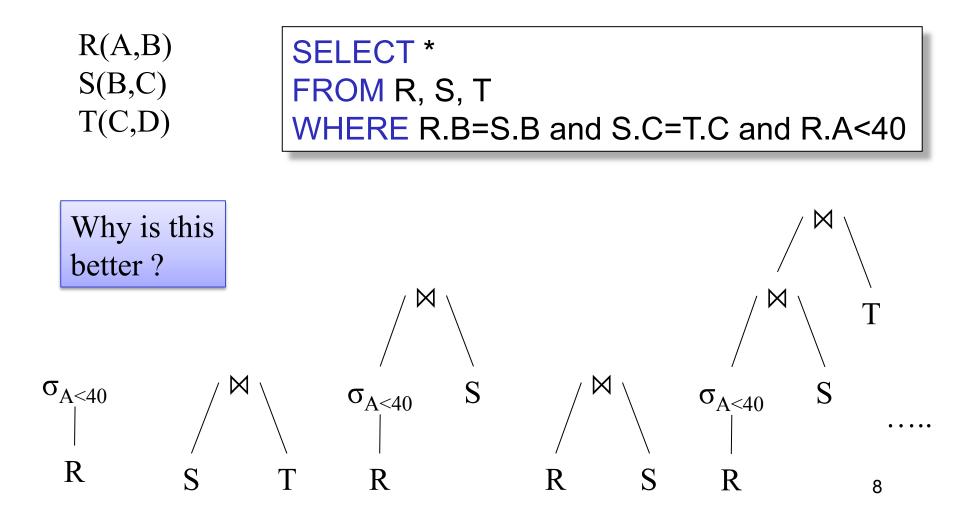
Physical plan

- What physical operators to use?
- What access paths to use (file scan or index)?

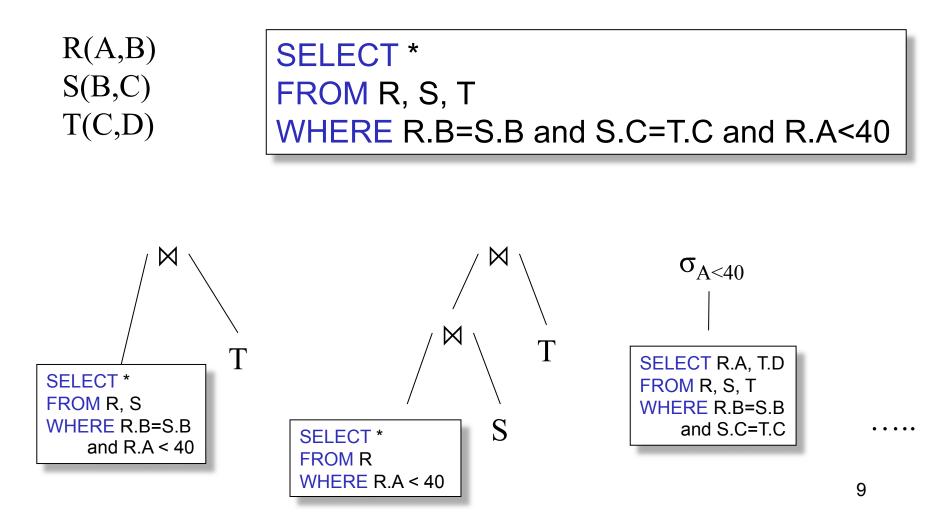

Optimizers

- Heuristic-based optimizers:
 - Apply greedily rules that always improve
 - Typically: push selections down
 - Very limited: no longer used today
- Cost-based optimizers
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan

The Search Space


- Complete plans
- Bottom-up plans
- Top-down plans

Complete Plans



Dan Suciu -- 444 Spring 2010

Bottom-up Partial Plans

Top-down Partial Plans

Plan Enumeration Algorithms

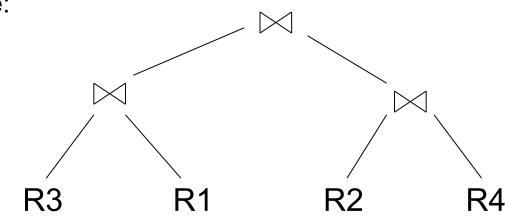
- Dynamic programming (in class)
 - Classical algorithm [1979]
 - Limited to joins: join reordering algorithm
 - Bottom-up
- Rule-based algorithm (will not discuss)
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down

Dynamic Programming

Originally proposed in System R [1979]

• Only handles single block queries:

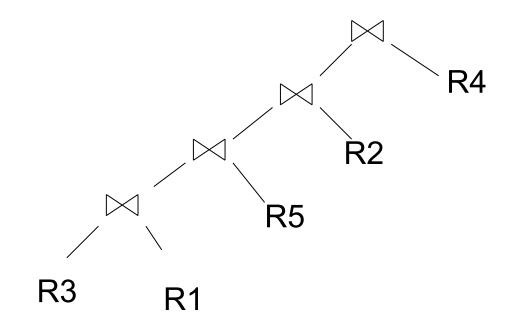
```
SELECT listFROMR1, \ldots, RnWHERE cond1AND cond2 AND \ldots AND condk
```


• Heuristics: selections down, projections up

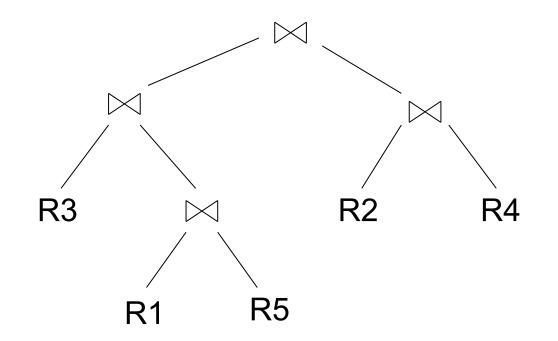
Dynamic Programming

- Search space = join trees
- Algebraic laws = commutativity, associativity
- Algorithm = dynamic programming ③

Join Trees

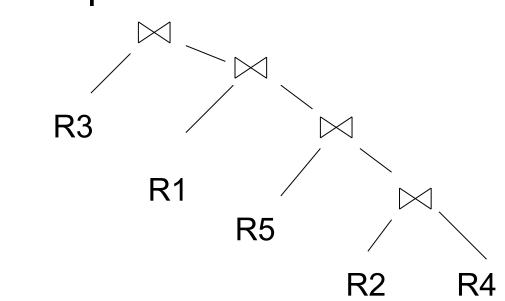

- $R1 \bowtie R2 \bowtie \dots \bowtie Rn$
- Join tree:

- A plan = a join tree
- A partial plan = a subtree of a join tree


Types of Join Trees

• Left deep:

Types of Join Trees


• Bushy:

Dan Suciu -- 444 Spring 2010

Types of Join Trees

• Right deep:

Dynamic Programming

Join ordering:

- Given: a query $R1 \bowtie R2 \bowtie \ldots \bowtie Rn$
- Find optimal order
- Assume we have a function cost() that gives us the cost of every join tree

SELECT listFROMR1, ..., RnWHERE cond1AND cond2AND $... AND cond_k$

Dynamic Programming

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q) = the estimated size of Q
 - Plan(Q) = a best plan for Q
 - Cost(Q) = the estimated cost of that plan

Dynamic Programming

- **Step 1**: For each {R_i} do:
 - -Size({R_i}) = B(R_i)

$$- Plan(\{R_i\}) = R_i$$

 $- \text{Cost}(\{R_i\}) = (\text{cost of scanning } R_i)$

SELECT listFROMR1, ..., RnWHERE cond1AND cond2AND $... AND cond_k$

Dynamic Programming

- Step 2: For each Q ⊆{R₁, ..., R_n} of cardinality i do:
 - Size(Q) = estimate it recursively
 - For every pair of subqueries Q', Q'' s.t. Q = Q' ∪ Q''

compute $cost(Plan(Q') \bowtie Plan(Q''))$

- Cost(Q) = the smallest such cost
- Plan(Q) = the corresponding plan

SELECT listFROMR1, ..., RnWHERE cond1 AND cond2 AND ... AND condk

Dynamic Programming

• **Step 3**: Return Plan({R₁, ..., R_n})

Dan Suciu -- 444 Spring 2010

To illustrate, ad-hoc cost model (from the book \odot):

- Cost(P₁ ⋈ P₂) = Cost(P₁) + Cost(P₂) + size(intermediate results for P₁, P₂)
- Cost of a scan = 0

SELECT * FROM R, S, T, U WHERE $cond_1 AND cond_2 AND \dots$

Example

- R ⋈ S ⋈ T ⋈ U
- Assumptions:

```
T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000
```

All join selectivities = 1%

$$T(R \bowtie S) = 0.01*T(R)*T(S)$$

 $T(S \bowtie T) = 0.01*T(S)*T(T)$
etc.

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5M	30k	(TU)S
RSTU	30M	60k +50k=110k	(RT)(SU)

T(R) = 2000T(S) = 5000 T(T) = 3000 T(U) = 1000

25

Reducing the Search Space

- Restriction 1: only left linear trees (no bushy)
- Restriction 2: no trees with cartesian product

 $\mathsf{R}(\mathsf{A},\mathsf{B})\bowtie\mathsf{S}(\mathsf{B},\mathsf{C})\bowtie\mathsf{T}(\mathsf{C},\mathsf{D})$

Plan: (R(A,B)⋈T(C,D)) ⋈ S(B,C) has a cartesian product. Most query optimizers will not consider it

Dan Suciu -- 444 Spring 2010

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Rule-Based Optimizers

- **Extensible** collection of rules Rule = Algebraic law with a direction
- Algorithm for firing these rules Generate many alternative plans, in some order

Prune by cost

- Volcano (later SQL Sever)
- Starburst (later DB2)

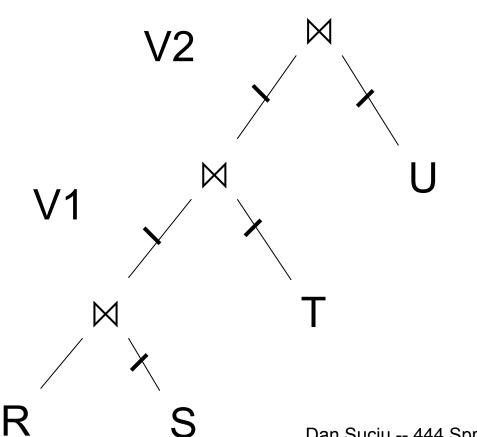
Dan Suciu -- 444 Spring 2010

Completing the Physical Query Plan

- Choose algorithm for each operator
 - How much memory do we have ?
 - Are the input operand(s) sorted ?
- Access path selection for base tables
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Access Path Selection

- Access path: a way to retrieve tuples from a table
 - A file scan
 - An index *plus* a matching selection condition
- Index matches selection condition if it can be used to retrieve just tuples that satisfy the condition
 - Example: Supplier(sid,sname,scity,sstate)
 - B+-tree index on (scity,sstate)
 - matches scity='Seattle'
 - does not match sid=3, does not match sstate='WA'


Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > 300 ^ scity='Seattle'
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?
- We should pick the **most selective** access path

Access Path Selectivity

- Access path selectivity is the number of pages retrieved if we use this access path
 - Most selective retrieves fewest pages
- As we saw earlier, for equality predicates
 - Selection on equality: $\sigma_{a=v}(R)$
 - V(R, a) = # of distinct values of attribute a
 - 1/V(R,a) is thus the reduction factor
 - Clustered index on a: cost B(R)/V(R,a)
 - Unclustered index on a: cost T(R)/V(R,a)
 - (we are ignoring I/O cost of index pages for simplicity)

Materialize Intermediate Results Between Operators

HashTable \leftarrow S repeat read(R, x) y \leftarrow join(HashTable, x) write(V1, y)

HashTable \leftarrow T repeat read(V1, y) $z \leftarrow$ join(HashTable, y) write(V2, z)

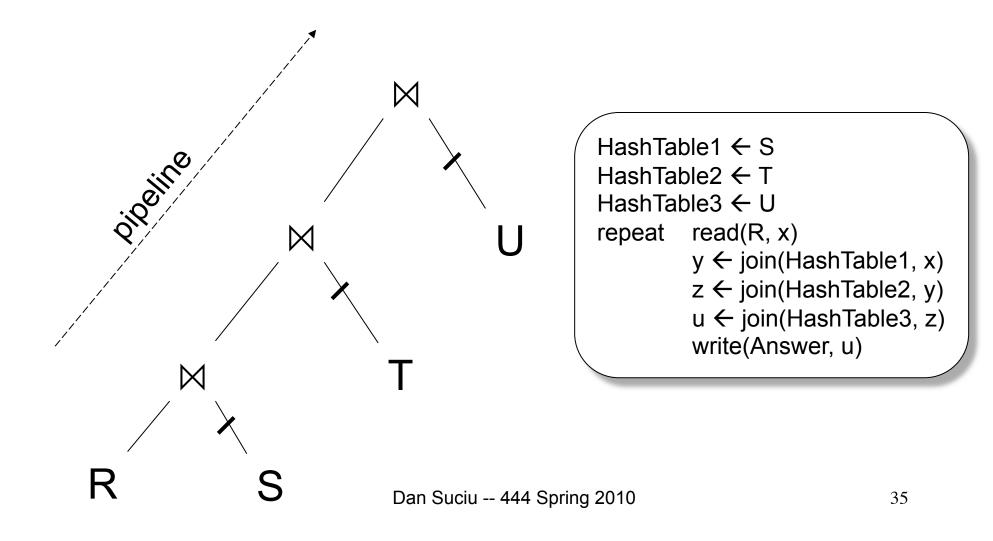
HashTable ← U repeat read(V2, z) u ← join(HashTable, z) write(Answer, u)

Dan Suciu -- 444 Spring 2010

Materialize Intermediate Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)


• What is the total cost of the plan?

– Cost =

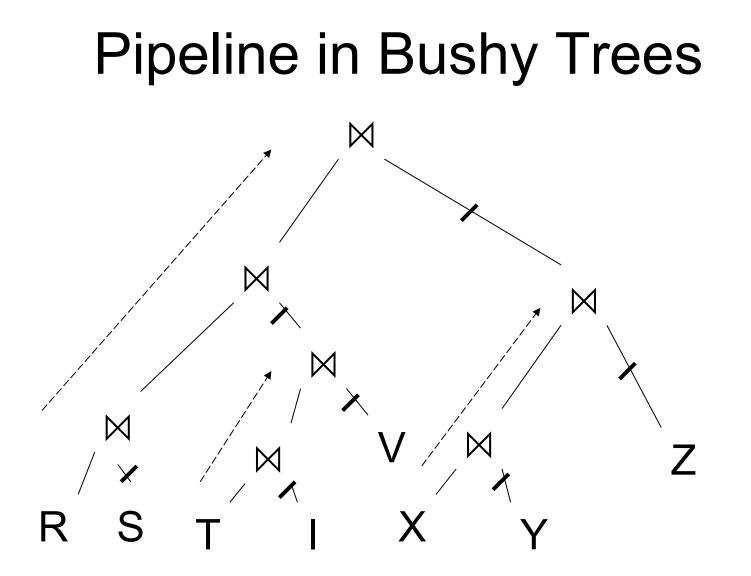
How much main memory do we need ?

– M =

Pipeline Between Operators

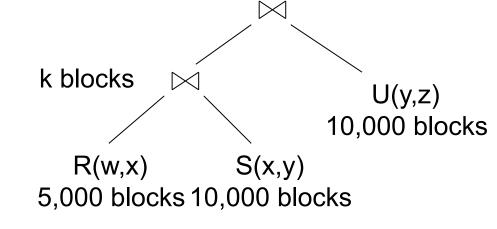
Pipeline Between Operators

Question in class

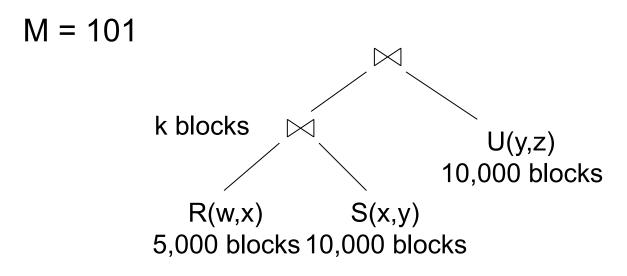

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan?

– Cost =

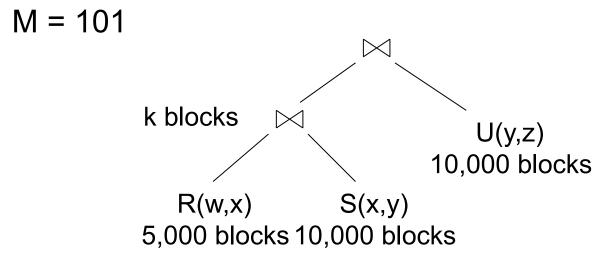

• How much main memory do we need ?

– M =

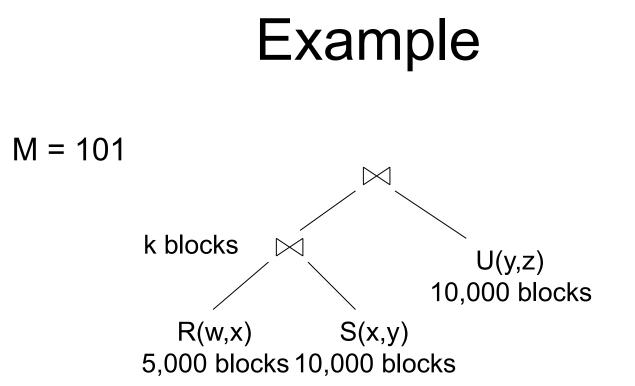


Dan Suciu -- 444 Spring 2010

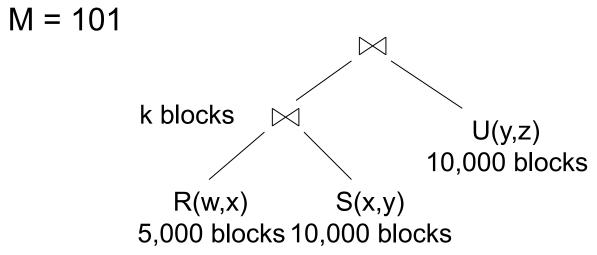
Logical plan is:



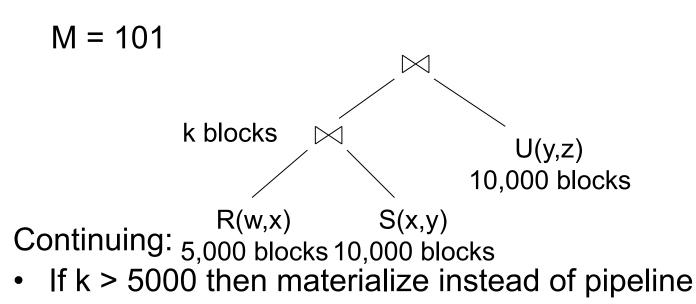
• Main memory M = 101 buffers


Naïve evaluation:

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k


Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we <u>pipeline</u>
- Cost so far: 3B(R) + 3B(S)


Continuing:

- How large are the 50 buckets on y? Answer: k/50.
- If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Continuing:

- If $50 < k \le 5000$ then send the 50 buckets in Step 3 to disk
 - Each bucket has size k/50 <= 100
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k