
Lecture 20:
Query Optimization (2)

Wednesday, May 19, 2010

Dan Suciu -- 444 Spring 2010 1

Dan Suciu -- 444 Spring 2010 2

Outline

•  Search space

•  Algorithms for enumerating query plans

•  Estimating the cost of a query plan

Key Decisions

Logical plan
•  What logical plans do we consider (left-

deep, bushy ?); Search Space
•  Which algebraic laws do we apply, and

in which context(s) ?; Optimization rules
•  In what order to we explore the search

space ?; Optimization algorithm

3

Key Decisions

Physical plan
•  What physical operators to use?
•  What access paths to use (file scan or

index)?

4

Optimizers

•  Heuristic-based optimizers:
– Apply greedily rules that always improve

•  Typically: push selections down
– Very limited: no longer used today

•  Cost-based optimizers
– Use a cost model to estimate the cost of

each plan
– Select the “cheapest” plan

Dan Suciu -- 444 Spring 2010 5

The Search Space

•  Complete plans

•  Bottom-up plans

•  Top-down plans

Dan Suciu -- 444 Spring 2010 6

Complete Plans

Dan Suciu -- 444 Spring 2010 7

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

8

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Why is this
better ?

Top-down Partial Plans

9

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

Plan Enumeration Algorithms

•  Dynamic programming (in class)
– Classical algorithm [1979]
– Limited to joins: join reordering algorithm
– Bottom-up

•  Rule-based algorithm (will not discuss)
– Database of rules (=algebraic laws)
– Usually: dynamic programming
– Usually: top-down

Dan Suciu -- 444 Spring 2010 10

11	

Dynamic Programming
Originally proposed in System R [1979]
•  Only handles single block queries:

•  Heuristics: selections down, projections up

SELECT list���
FROM R1, …, Rn���
WHERE cond1 AND cond2 AND . . . AND condk	

Dan Suciu -- 444 Spring 2010

Dynamic Programming

•  Search space = join trees

•  Algebraic laws = commutativity, associativity

•  Algorithm = dynamic programming 

Dan Suciu -- 444 Spring 2010 12

13	

Join Trees
•  R1 ⨝ R2 ⨝ …. ⨝ Rn
•  Join tree:

•  A plan = a join tree
•  A partial plan = a subtree of a join tree

R3 R1 R2 R4

Dan Suciu -- 444 Spring 2010

14	

Types of Join Trees

•  Left deep:

R3 R1

R5

R2

R4

Dan Suciu -- 444 Spring 2010

15	

Types of Join Trees

•  Bushy:

R3

R1

R2 R4

R5

Dan Suciu -- 444 Spring 2010

16	

Types of Join Trees

•  Right deep:

R3

R1
R5

R2 R4

Dan Suciu -- 444 Spring 2010

17	

Dynamic Programming

Join ordering:

•  Given: a query R1 ⨝ R2 ⨝ . . . ⨝ Rn
•  Find optimal order

•  Assume we have a function cost() that
gives us the cost of every join tree

Dan Suciu -- 444 Spring 2010

SELECT list���
FROM R1, …, Rn���
WHERE cond1 AND cond2 AND . . . AND condk	

18	

Dynamic Programming

•  For each subquery Q ⊆{R1, …, Rn}
compute the following:
– Size(Q) = the estimated size of Q
– Plan(Q) = a best plan for Q
– Cost(Q) = the estimated cost of that plan

Dan Suciu -- 444 Spring 2010

SELECT list���
FROM R1, …, Rn���
WHERE cond1 AND cond2 AND . . . AND condk	

19	

Dynamic Programming

•  Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)
– Plan({Ri}) = Ri
– Cost({Ri}) = (cost of scanning Ri)

Dan Suciu -- 444 Spring 2010

SELECT list���
FROM R1, …, Rn���
WHERE cond1 AND cond2 AND . . . AND condk	

20	

Dynamic Programming

•  Step 2: For each Q ⊆{R1, …, Rn} of
cardinality i do:
– Size(Q) = estimate it recursively
– For every pair of subqueries Q’, Q’’

s.t. Q = Q’ ∪ Q’’
compute cost(Plan(Q’) ⨝ Plan(Q’’))
•  Cost(Q) = the smallest such cost
•  Plan(Q) = the corresponding plan

Dan Suciu -- 444 Spring 2010

SELECT list���
FROM R1, …, Rn���
WHERE cond1 AND cond2 AND . . . AND condk	

21	

Dynamic Programming

•  Step 3: Return Plan({R1, …, Rn})

Dan Suciu -- 444 Spring 2010

SELECT list���
FROM R1, …, Rn���
WHERE cond1 AND cond2 AND . . . AND condk	

22	

Example

To illustrate, ad-hoc cost model (from the book ):

•  Cost(P1 ⨝ P2) = Cost(P1) + Cost(P2) +
 size(intermediate results for P1, P2)

•  Cost of a scan = 0

Dan Suciu -- 444 Spring 2010

23	

Example

•  R ⨝ S ⨝ T ⨝ U
•  Assumptions:

Dan Suciu -- 444 Spring 2010

SELECT *���
FROM R, S, T, U ���
WHERE cond1 AND cond2 AND . . . 	

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

T(R ⨝ S) = 0.01*T(R)*T(S)
T(S ⨝ T) = 0.01*T(S)*T(T)
etc.

All join selectivities = 1%

24	

Subquery	

 Size	

 Cost	

 Plan	

RS	

RT	

RU	

ST	

SU	

TU	

RST	

RSU	

RTU	

STU	

RSTU	

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

25	

Subquery	

 Size	

 Cost	

 Plan	

RS	

 100k	

 0	

 RS	

RT	

 60k	

 0	

 RT	

RU	

 20k	

 0	

 RU	

ST	

 150k	

 0	

 ST	

SU	

 50k	

 0	

 SU	

TU	

 30k	

 0	

 TU	

RST	

 3M	

 60k	

 (RT)S	

RSU	

 1M	

 20k	

 (RU)S	

RTU	

 0.6M	

 20k	

 (RU)T	

STU	

 1.5M	

 30k	

 (TU)S	

RSTU	

 30M	

 60k
+50k=110k	

 (RT)(SU)	

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

26	

Reducing the Search Space

•  Restriction 1: only left linear trees (no bushy)

•  Restriction 2: no trees with cartesian product

Dan Suciu -- 444 Spring 2010

R(A,B) ⨝ S(B,C) ⨝ T(C,D)

Plan: (R(A,B)⨝T(C,D)) ⨝ S(B,C)
has a cartesian product.
Most query optimizers will not consider it

27	

Dynamic Programming:
Summary

•  Handles only join queries:
–  Selections are pushed down (i.e. early)
–  Projections are pulled up (i.e. late)

•  Takes exponential time in general, BUT:
–  Left linear joins may reduce time
–  Non-cartesian products may reduce time further

Dan Suciu -- 444 Spring 2010

28	

Rule-Based Optimizers
•  Extensible collection of rules

Rule = Algebraic law with a direction
•  Algorithm for firing these rules

Generate many alternative plans, in some
order

Prune by cost

•  Volcano (later SQL Sever)
•  Starburst (later DB2)

Dan Suciu -- 444 Spring 2010

29	

Completing the
Physical Query Plan

•  Choose algorithm for each operator
– How much memory do we have ?
– Are the input operand(s) sorted ?

•  Access path selection for base tables
•  Decide for each intermediate result:

– To materialize
– To pipeline

Dan Suciu -- 444 Spring 2010

Dan Suciu -- 444 Spring 2010 30

Access Path Selection
•  Access path: a way to retrieve tuples from a table

–  A file scan
–  An index plus a matching selection condition

•  Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
–  Example: Supplier(sid,sname,scity,sstate)
–  B+-tree index on (scity,sstate)

•  matches scity=‘Seattle’
•  does not match sid=3, does not match sstate=‘WA’

Dan Suciu -- 444 Spring 2010 31

Access Path Selection
•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

•  We should pick the most selective access path

Dan Suciu -- 444 Spring 2010 32

Access Path Selectivity
•  Access path selectivity is the number of pages

retrieved if we use this access path
–  Most selective retrieves fewest pages

•  As we saw earlier, for equality predicates
–  Selection on equality: σa=v(R)
–  V(R, a) = # of distinct values of attribute a
–  1/V(R,a) is thus the reduction factor
–  Clustered index on a: cost B(R)/V(R,a)
–  Unclustered index on a: cost T(R)/V(R,a)
–  (we are ignoring I/O cost of index pages for simplicity)

33	

Materialize Intermediate
Results Between Operators

⋈

⋈

⋈ T

R S

U

HashTable  S
repeat read(R, x)

 y  join(HashTable, x)
 write(V1, y)

HashTable  T
repeat read(V1, y)

 z  join(HashTable, y)
 write(V2, z)

HashTable  U
repeat read(V2, z)

 u  join(HashTable, z)
 write(Answer, u)

V1

V2

Dan Suciu -- 444 Spring 2010

34	

Materialize Intermediate
Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?
–  Cost =

•  How much main memory do we need ?
–  M =

Dan Suciu -- 444 Spring 2010

35	

Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1  S
HashTable2  T
HashTable3  U
repeat read(R, x)

 y  join(HashTable1, x)
 z  join(HashTable2, y)
 u  join(HashTable3, z)
 write(Answer, u)

Dan Suciu -- 444 Spring 2010

36	

Pipeline Between Operators
Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?
–  Cost =

•  How much main memory do we need ?
–  M =

Dan Suciu -- 444 Spring 2010

37	

Pipeline in Bushy Trees
⋈

⋈

⋈

X R S

⋈

⋈ Z

Y

⋈

V

T

⋈

I
Dan Suciu -- 444 Spring 2010

38	

Example

•  Logical plan is:

•  Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

Dan Suciu -- 444 Spring 2010

39	

Example

Naïve evaluation:
•  2 partitioned hash-joins
•  Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

40	

Example

Smarter:
•  Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
•  Step 2: hash S on x into 100 buckets; to disk
•  Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash

result on y into 50 buckets (50 buffers) -- here we pipeline
•  Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

41	

Example

Continuing:
•  How large are the 50 buckets on y ? Answer: k/50.
•  If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
•  Step 4: read U from disk, hash on y and join with memory
•  Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

42	

Example

Continuing:
•  If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

–  Each bucket has size k/50 <= 100
•  Step 4: partition U into 50 buckets
•  Step 5: read each partition and join in memory
•  Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

43	

Example

Continuing:
•  If k > 5000 then materialize instead of pipeline
•  2 partitioned hash-joins
•  Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

