Lecture 22:
Parallel Databases

Wednesday, May 26, 2010

Dan Suciu -- 444 Spring 2010

Overview

* Parallel architectures and operators: Ch. 20.1

 Map-reduce: Ch. 20.2

* Semijoin reductions, full reducers: Ch. 20.4
— We covered this a few lectures ago

Parallel v.s. Distributed
Databases

* Parallel database system:

— Improve performance through parallel
implementation

* Distributed database system:

— Data is stored across several sites, each site

managed by a DBMS capable of running
independently

Parallel DBMSs

e Goal

— Improve performance by executing multiple
operations in parallel

* Key benefit

— Cheaper to scale than relying on a single increasingly
more powerful processor

e Key challenge

— Ensure overhead and contention do not kill
performance

Performance Metrics

for Parallel DBMSs

* Speedup
— More processors =2 higher speed
— Individual queries should run faster
— Should do more transactions per second (TPS)

e Scaleup
— More processors =» can process more data

— Batch scaleup
* Same guery on larger input data should take the same time

— Transaction scaleup
* N-times as many TPS on N-times larger database
e But each transaction typically remains small

Linear v.s. Non-linear Speedup

A

Speedup

processors (=P)

v

Linear v.s. Non-linear Scaleup

A

Batch
Scaleup

x 1 x5 x10 x15
|

|
processors (=P) AND data size

S
| -

Challenges to
Linear Speedup and Scaleup

* Startup cost
— Cost of starting an operation on many processors

 |Interference

— Contention for resources between processors

e Skew
— Slowest processor becomes the bottleneck

Dan Suciu -- 444 Spring 2010

Architectures for Parallel Databases

* Shared memory
e Shared disk

* Shared nothing

Shared Memory

990

Interconnectlon Network

Global Shared Memory

o o o

Dan Suciu -- 444 Spring 2010 10

Shared Disk

@ .

Interconnectlon Network J

o o o

Dan Suciu -- 444 Spring 2010

11

Shared Nothing

Interconnectlon Network

XK

o o o

Dan Suciu -- 444 Spring 2010

12

Shared Nothing

Most scalable architecture

— Minimizes interference by minimizing resource
sharing

— Can use commodity hardware

Also most difficult to program and manage

Processor = server = node
P = number of nodes

We will focus on shared nothing

Question

* What exactly can we parallelize in a parallel
DB ?

Taxonomy for
Parallel Query Evaluation

* |nter-query parallelism
— Each query runs on one processor

* |Inter-operator parallelism

— A query runs on multiple processors
— An operator runs on one processor

* |ntra-operator parallelism
— An operator runs on multiple processors

We study only intra-operator parallelism: most scalable

Horizontal Data Partitioning

Relation R split into P chunks R, ..., Ry_;, stored at
the P nodes

Round robin: tuple t. to chunk (i mod P)

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple t to chunkiifv,; <t.A<v,

Parallel Selection

Compute o,_,(R), or 6,;.2.»(R)
 On a conventional database: cost = B(R)

* Q: What is the cost on a parallel database with
P processors ?

— Round robin
— Hash partitioned
— Range partitioned

Parallel Selection

* Q: What is the cost on a parallel database with
P processors ?

 A:B(R)/Pin all cases

 However, different processors do the work:
— Round robin: all servers do the work
— Hash: one server for o,_ (R), all for 6,;.,.,,(R)
— Range: one server only

Data Partitioning Revisited

What are the pros and cons ?

* Round robin
— Good load balance but always needs to read all the data

e Hash based partitioning

— Good load balance but works only for equality predicates and
full scans

* Range based partitioning
— Works well for range predicates but can suffer from data skew

Parallel Group By: v, ¢um)(R)

* Step 1: server i partitions chunk R. using a hash
function h(t.A) mod P: Ry, Ry, ..., Rip4

e Step 2: server i sends partition R;; to serve |

* Step 3: serverjcomputes y, g,me) ON
ROJ’ le’ see RP_l)j

Cost of Parallel Group By

Recall conventional cost = 3B(R)
* Cost of Step 1: B(R)/P 1/O operations
* Cost of Step 2: (P-1)/P B(R) blocks are sent

— Network costs assumed to be much lower than /0O
e Cost of Step 3: 2 B(R)/P

— Why ?

— When can we reduce itto0?

Total = 3B(R) / P + communication costs

Parallel Join: R>,_5 S

e Step 1

— For all servers in [0,k], server i partitions chunk R
using a hash function h(t.A) mod P: Ry, Ry, ..., Rip4

— For all servers in [k+1,P], server j partitions chunk S,
using a hash function h(t.A) mod P: Sior Sj1r -+ Ripg

* Step 2:
— Server i sends partition R, to server u
— Server j sends partition S, to server u

* Steps 3: Server u computes the join of R;, with S,

Cost of Parallel Join

e Step 1: (B(R) + B(S))/P

e Step2: O

— (P-1)/P (B(R) + B(S)) blocks are sent, but we
assume network costs to be << disk I/O costs

* Step 3:
— 0 if smaller table fits in main memory: B(S)/p <=M
— 2(B(R)+B(S))/P otherwise

Parallel Dataflow Implementation

* Use relational operators unchanged

e Add special split and merge operators
— Handle data routing, buffering, and flow control

 Example: exchange operator
— Inserted between consecutive operators in the query plan
— Can act as either a producer or consumer

— Producer pulls data from operator and sends to n consumers
* Producer acts as driver for operators below it in query plan

— Consumer buffers input data from n producers and makes it
available to operator through getNext interface

Map Reduce

* Google: paper published 2004
* Free variant: Hadoop

* Map-reduce = high-level programming model
and implementation for large-scale parallel
data processing

Data Model

* Files!

* A file = a bag of (key, value) pairs

A map-reduce program:
— Input: a bag of (input key, value) pairs
— Output: a bag of (output key, value) pairs

Step 1: the MAP Phase

e User provides the MAP-function:
— Input: one (input key, value)
— Ouput: a bag of (intermediate key, value) pairs

e System applies the map function in parallel to
all (input key, value) pairs in the input file

Step 2: the REDUCE Phase

e User provides the REDUCE function:
— Input: intermediate key, and bag of values
— QOutput: bag of output values

e System groups all pairs with the same
intermediate key, and passes the bag of values

to the REDUCE function

Example

e Counting the number of occurrences of each
word in a large collection of documents

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “1”): reduce(String key, lterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

Dan Suciu -- 444 Spring 2010 29

MAP

(k1,vl)

REDUCE

(k2,v2)

i1, wl)| —

N,

(k3,v3)

(2, w2)| ——

(i3, w3)| —>

Dan Suciu -- 444 Spring 2010

30

Map = GROUP BY,
Reduce = Aggregate

R(documentKey, word)

SELECT word, sum(1)
FROM R
GROUP BY word

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assighs workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

MR Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader-—Map —.>:Combine:——> \S;rt'—»‘ Reduce \
l filel

HDFS

Interesting Implementation Details

* Worker failure:
— Master pings workers periodically,

— |If down then reassigns its splits to all other
workers =2 good load balance

e Choice of M and R:

— Larger is better for load balancing
— Limitation: master needs O(MxR) memory

Interesting Implementation Details

Backup tasks:
e Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:

— Bad disk forces frequent correctable errors (30MB/s
- 1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

e Stragglers are a main reason for slowdown

e Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

Map-Reduce Summary

Hides scheduling and parallelization details

However, very limited queries
— Difficult to write more complex tasks
— Need multiple map-reduce operations

Solution:

PIG-Latin |

Others:
— Scope (MS): SQL ! But proprietary...
— DryadLINQ (MS): LINQ ! But also proprietary...

