Lecture 22: Parallel Databases

Wednesday, May 26, 2010

Overview

Parallel architectures and operators: Ch. 20.1

Map-reduce: Ch. 20.2

- Semijoin reductions, full reducers: Ch. 20.4
 - We covered this a few lectures ago

Parallel v.s. Distributed Databases

- Parallel database system:
 - Improve performance through parallel implementation

- Distributed database system:
 - Data is stored across several sites, each site managed by a DBMS capable of running independently

Parallel DBMSs

Goal

Improve performance by executing multiple operations in parallel

Key benefit

 Cheaper to scale than relying on a single increasingly more powerful processor

Key challenge

Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

Speedup

- More processors
 higher speed
- Individual queries should run faster
- Should do more transactions per second (TPS)

Scaleup

- More processors → can process more data
- Batch scaleup
 - Same query on larger input data should take the same time
- Transaction scaleup
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small

Linear v.s. Non-linear Speedup

Linear v.s. Non-linear Scaleup

Challenges to Linear Speedup and Scaleup

- Startup cost
 - Cost of starting an operation on many processors

- Interference
 - Contention for resources between processors

- Skew
 - Slowest processor becomes the bottleneck

Architectures for Parallel Databases

Shared memory

Shared disk

Shared nothing

Shared Memory

Shared Disk

Shared Nothing

Shared Nothing

- Most scalable architecture
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program and manage
- Processor = server = node
- P = number of nodes

We will focus on shared nothing

Question

What exactly can we parallelize in a parallel DB?

Taxonomy for Parallel Query Evaluation

- Inter-query parallelism
 - Each query runs on one processor
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
- Intra-operator parallelism
 - An operator runs on multiple processors

Horizontal Data Partitioning

- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Round robin: tuple t_i to chunk (i mod P)
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors?
 - Round robin
 - Hash partitioned
 - Range partitioned

Parallel Selection

- Q: What is the cost on a parallel database with P processors?
- A: B(R) / P in all cases
- However, different processors do the work:
 - Round robin: all servers do the work
 - Hash: one server for $\sigma_{A=v}(R)$, all for $\sigma_{v1< A< v2}(R)$
 - Range: one server only

Data Partitioning Revisited

What are the pros and cons?

- Round robin
 - Good load balance but always needs to read all the data
- Hash based partitioning
 - Good load balance but works only for equality predicates and full scans
- Range based partitioning
 - Works well for range predicates but can suffer from data skew

Parallel Group By: $\gamma_{A, sum(B)}(R)$

 Step 1: server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1}

Step 2: server i sends partition R_{ij} to serve j

• Step 3: server j computes $\gamma_{A, \text{sum}(B)}$ on R_{0j} , R_{1j} , ..., $R_{P-1,j}$

Cost of Parallel Group By

Recall conventional cost = 3B(R)

- Cost of Step 1: B(R)/P I/O operations
- Cost of Step 2: (P-1)/P B(R) blocks are sent
 - Network costs assumed to be much lower than I/O
- Cost of Step 3: 2 B(R)/P
 - Why ?
 - When can we reduce it to 0?

Total = 3B(R) / P + communication costs

Parallel Join: $R \bowtie_{A=B} S$

Step 1

- For all servers in [0,k], server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1}
- For all servers in [k+1,P], server j partitions chunk S_j using a hash function h(t.A) mod P: S_{j0} , S_{j1} , ..., $R_{j,P-1}$

• Step 2:

- Server i sends partition R_{iu} to server u
- Server j sends partition S_{ju} to server u
- Steps 3: Server u computes the join of R_{iu} with S_{iu}

Cost of Parallel Join

- Step 1: (B(R) + B(S))/P
- Step 2: 0
 - (P-1)/P (B(R) + B(S)) blocks are sent, but we assume network costs to be << disk I/O costs</p>
- Step 3:
 - 0 if smaller table fits in main memory: B(S)/p <=M</p>
 - -2(B(R)+B(S))/P otherwise

Parallel Dataflow Implementation

- Use relational operators unchanged
- Add special split and merge operators
 - Handle data routing, buffering, and flow control
- Example: exchange operator
 - Inserted between consecutive operators in the query plan
 - Can act as either a producer or consumer
 - Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
 - Consumer buffers input data from n producers and makes it available to operator through getNext interface

Map Reduce

Google: paper published 2004

Free variant: Hadoop

 Map-reduce = high-level programming model and implementation for large-scale parallel data processing

Data Model

Files!

A file = a bag of (key, value) pairs

- A map-reduce program:
 - Input: a bag of (input key, value) pairs
 - Output: a bag of (output key, value) pairs

Step 1: the MAP Phase

- User provides the MAP-function:
 - Input: one (input key, value)
 - Ouput: a bag of (intermediate key, value) pairs
- System applies the map function in parallel to all (input key, value) pairs in the input file

Step 2: the REDUCE Phase

- User provides the REDUCE function:
 - Input: intermediate key, and bag of values
 - Output: bag of output values
- System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example

 Counting the number of occurrences of each word in a large collection of documents

```
map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1"):
```

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```


Map = GROUP BY, Reduce = Aggregate

R(documentKey, word)

SELECT word, sum(1)
FROM R
GROUP BY word

Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

MR Phases

Interesting Implementation Details

- Worker failure:
 - Master pings workers periodically,
 - If down then reassigns its splits to all other workers → good load balance
- Choice of M and R:
 - Larger is better for load balancing
 - Limitation: master needs O(M×R) memory

Interesting Implementation Details

Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks. Eg:
 - Bad disk forces frequent correctable errors (30MB/s
 → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Map-Reduce Summary

- Hides scheduling and parallelization details
- However, very limited queries
 - Difficult to write more complex tasks
 - Need multiple map-reduce operations
- Solution:

PIG-Latin!

- Others:
 - Scope (MS): SQL! But proprietary...
 - DryadLINQ (MS): LINQ! But also proprietary...