Lecture 24: Bloom Filters

Wednesday, June 2, 2010

Topics for the Final

- SQL
- Conceptual Design (BCNF)
- Transactions
- Indexes
- Query execution and optimization
- Cardinality Estimation
- Parallel Databases

Lecture on Bloom Filters

Not described in the textbook!
Lecture based in part on:

- Broder, Andrei; Mitzenmacher, Michael (2005), "Network Applications of Bloom Filters: A Survey", Internet Mathematics 1 (4): 485-509
- Bloom, Burton H. (1970), "Space/time trade-offs in hash coding with allowable errors",
Communications of the ACM 13 (7): 422-42

Example (from Pig Latin lecture)

Users(name, age)
Pages(user, url)

SELECT Pages.url, count(*) as cnt FROM Users, Pages WHERE Users.age in [18..25]
 GROUP BY Pages.url ORDER DESC cnt

Example

Problem: many pages, but only a few visited by users with age $18 . .25$

- Pig's solution:
- MAP phase send all pages and all users to the reducers
- How can we reduce communication cost ?

Hash Maps

- Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of elements
- Let $\mathrm{m}>\mathrm{n}$
- Hash function $\mathrm{h}: \mathrm{S} \rightarrow\{1,2, \ldots, \mathrm{~m}\}$

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Hash Map = Dictionary

The hash map acts like a dictionary

- $\operatorname{Insert}(\mathrm{x}, \mathrm{H})=$ set bit $\mathrm{h}(\mathrm{x})$ to 1
- Collisions are possible
- $\operatorname{Member}(\mathrm{y}, \mathrm{H})=\operatorname{check}$ if bit $\mathrm{h}(\mathrm{y})$ is 1
- False positives are possible
- Delete (y, H) = not supported !
- Extensions possible, see later

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Example (cont'd)

- Map-Reduce task 1
- Map task: compute a hash map H for users with age in [18..25]. Several Map tasks in parallel.
- Reduce task: combine all hash maps using OR. One single reducer suffices.
- Map-Reduce task 2

> Why don't we lose any pages?

- Map tasks 1: map each user to the appropriate region
- Map tasks 2: map each page in H) to appropriate region
- Reduce task: do the join

Analysis

- Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Let $\mathrm{j}=$ a specific bit in $\mathrm{H}(1 \leq \mathrm{j} \leq \mathrm{m})$
- What is the probability that j remains 0 after inserting all n elements from S into H ?
- Will compute in two steps

| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?

| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?
- Answer: $\mathrm{p}=1-1 / \mathrm{m}$

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j remains 0 ?

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j remains 0 ?
- Answer: $\mathrm{p}=(1-1 / \mathrm{m})^{\mathrm{n}}$

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Probability of False Positives

- Take a random element y, and check member(y, H)
- What is the probability that it returns true?

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Probability of False Positives

- Take a random element y, and check member(y, H)
- What is the probability that it returns true?
- Answer: it is the probability that bit $h(y)$ is 1 , which is $\mathrm{f}=1-(1-1 / \mathrm{m})^{\mathrm{n}} \approx 1-\mathrm{e}^{-\mathrm{n} / \mathrm{m}}$

Bloom Filters

- Introduced by Burton Bloom in 1970
- Improve the false positive ratio
- Idea: use k independent hash functions

Bloom Filter = Dictionary

- $\operatorname{Insert}(x, H)=$ set bits $h_{1}(x), \ldots, h_{k}(x)$ to 1
- Collisions are possible
- $\operatorname{Member}(\mathrm{y}, \mathrm{H})=$ check if bits $\mathrm{h}_{1}(\mathrm{y}), \ldots, \mathrm{h}_{\mathrm{k}}(\mathrm{y})$ are 1
- False positives are possible
- Delete $(\mathrm{z}, \mathrm{H})=$ not supported !
- Extensions possible, see later

Example Bloom Filter k=3

\section*{| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $0^{0} 0$}

$\operatorname{Member}(\mathrm{y}, \mathrm{H})$

$\mathrm{y}_{1}=$ is not in H (why ?); y_{2} may be in H (why ?) ${ }_{18}$

Bloom Filter Principle

- Wherever a list or set is used, and space is at a premium, consider using a Bloom filter if the effect of false positives can be mitigated

Choosing k

Two competing forces:

- If $\mathrm{k}=$ large
- Test more bits for member $(\mathrm{y}, \mathrm{H}) \boldsymbol{\rightarrow}$ lower false positive rate
- More bits in H are $1 \rightarrow$ higher false positive rate
- If $\mathrm{k}=$ small
- More bits in H are $0 \rightarrow$ lower positive rate
- Test fewer bits for member $(\mathrm{y}, \mathrm{H}) \rightarrow$ higher rate

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions $=\mathrm{k}$
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}$, \#hash functions $=\mathrm{k}$
- Let's insert only x_{i} into H
- What is the probability that bit j is 0 ?
- Answer: $\mathrm{p}=(1-1 / \mathrm{m})^{\mathrm{k}}$

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j remains 0 ?

Analysis

- Recall $|\mathrm{H}|=\mathrm{m}, \mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Let's insert all elements from S in H
- What is the probability that bit j remains 0 ?
- Answer: $\mathrm{p}=(1-1 / \mathrm{m})^{\mathrm{kn}} \approx \mathrm{e}^{-\mathrm{kn} / \mathrm{m}}$

Probability of False Positives

- Take a random element y, and check member(y, H)
- What is the probability that it returns true?

Probability of False Positives

- Take a random element y, and check member(y,H)
- What is the probability that it returns true?
- Answer: it is the probability that all k bits h_{1} (y), $\ldots, \mathrm{h}_{\mathrm{k}}(\mathrm{y})$ are 1 , which is:

$$
\mathrm{f}=(1-\mathrm{p})^{\mathrm{k}} \approx\left(1-\mathrm{e}^{-\mathrm{kn} / \mathrm{m}}\right)^{\mathrm{k}}
$$

Optimizing k

- For fixed m, n, choose k to minimize the false positive rate f
- Denote $\mathrm{g}=\ln (\mathrm{f})=\mathrm{k} \ln \left(1-\mathrm{e}^{-\mathrm{kn} / \mathrm{m}}\right)$
- Goal: find k to minimize g

$$
\frac{\partial g}{\partial k}=\ln \left(1-\mathrm{e}^{-\frac{k n}{m}}\right)+\frac{k n}{m} \frac{\mathrm{e}^{-\frac{k n}{m}}}{1-\mathrm{e}^{-\frac{k n}{m}}}
$$

$$
\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}
$$

Bloom Filter Summary

Given $\mathrm{n}=|\mathrm{S}|, \mathrm{m}=|\mathrm{H}|$,
choose $\mathrm{k}=\ln 2 \times \mathrm{m} / \mathrm{n}$ hash functions
Probability that some bit j is 1

$$
\mathrm{p} \approx \mathrm{e}^{-\mathrm{kn} / \mathrm{m}}=1 / 2
$$

Expected distribution $\mathrm{m} / 2$ bits $1, \mathrm{~m} / 2$ bits 0

Probability of false positive

$$
\mathrm{f}=(1-\mathrm{p})^{\mathrm{k}} \approx(1 / 2)^{\mathrm{k}}=(1 / 2)^{(\ln 2) \mathrm{m} / \mathrm{n}} \approx(0.6185)^{\mathrm{m} / \mathrm{n}}
$$

Bloom Filter Summary

- In practice one sets $\mathrm{m}=\mathrm{cn}$, for some constant c
- Thus, we use c bits for each element in S
- Then $\mathrm{f} \approx(0.6185)^{\mathrm{c}}=$ constant
- Example: $m=8 n$, then
$\mathrm{k}=8(\ln 2)=5.545$ (use 6 hash functions)
$\mathrm{f} \approx(0.6185)^{\mathrm{m} / \mathrm{n}}=(0.6185)^{8} \approx 0.02$ (2% false positives)
Compare to a hash table: $\mathrm{f} \approx 1-\mathrm{e}^{-\mathrm{n} / \mathrm{m}}=1-\mathrm{e}^{-1 / 8} \approx 0.11$

Set Operations

Intersection and Union of Sets:

- Set $\mathrm{S} \rightarrow$ Bloom filter H
- Set $\mathrm{S}^{\prime} \rightarrow$ Bloom filter H’
- How do we computed the Bloom filter for the intersection of S and S^{\prime} ?

Set Operations

Intersection and Union:

- Set $\mathrm{S} \rightarrow$ Bloom filter H
- Set $\mathrm{S}^{\prime} \rightarrow$ Bloom filter H^{\prime}
- How do we computed the Bloom filter for the intersection of S and S^{\prime} ?
- Answer: bit-wise AND: H \wedge H'

Counting Bloom Filter

Goal: support delete(z, H)
Keep a counter for each bit j

- Insertion \rightarrow increment counter
- Deletion \rightarrow decrement counter
- Overflow \rightarrow keep bit 1 forever

Using 4 bits per counter:
Probability of overflow $\leq 1.3710^{-15} \times \mathrm{m}$

Application: Dictionaries

Bloom originally introduced this for hyphenation

- 90% of English words can be hyphenated using simple rules
- 10% require table lookup
- Use "bloom filter" to check if lookup needed

Application: Distributed Caching

- Web proxies maintain a cache of (URL, page) pairs
- If a URL is not present in the cache, they would like to check the cache of other proxies in the network
- Transferring all URLs is expensive !
- Instead: compute Bloom filter, exchange periodically

