
TA Section

April 8, 2010

2

Modifying the Database

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

Insertions

General form:

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

Insertions

Product(name, listPrice, category)

Purchase(buyer, seller, product, price)

Missing attribute  NULL.

May drop attribute names if give them in order.

INSERT INTO Purchase(buyer, seller, product, price)

VALUES („Joe‟, „Fred‟, „wakeup-clock-espresso-machine‟,

„The Sharper Image‟)

Example: Insert a new purchase to the database:

5

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product

FROM Purchase

WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.

Here we insert many tuples into PRODUCT

6

Deletions

DELETE FROM PURCHASE

WHERE seller = „Joe‟ AND

product = „Brooklyn Bridge‟

Example:

7

Updates

UPDATE PRODUCT

SET price = price/2

WHERE Product.name IN

(SELECT product

FROM Purchase

WHERE Date =„Oct, 25, 1999‟);

Example:

Aggregate Queries

• Our Schema

AUTHOR(aid, name)

AUTH_DOC(aid, did)

DOCUMENT (did, title)

DOC_WORD (did, word)

WORD(word)

AUTHOR DOCUMENT WORDAUTH_DOC DOC_WORDS

• Find authors who wrote more than 20 docs

SELECT name FROM AUTHOR a

WHERE(SELECT COUNT(*) FROM

AUTH_DOC ad WHERE ad.aid = a.aid) > 20

SELECT name FROM AUTHOR a, AUTH_DOC

ad WHERE a.aid = ad.aid GROUP BY a.aid,

a.name HAVING COUNT(*) > 20

• Find authors who have a vocabulary of more
than 10,000 words

SELECT name FROM AUTHOR WHERE
(SELECT COUNT(DISTINCT word) FROM …) >
10000

SELECT name FROM AUTHOR a, AUTH_DOC
ad, DOC_WORDS dw WHERE a.aid = ad.aid
AND ad.did = dw.did GROUP BY a.aid, a.name
HAVING COUNT(DISTINCT word) > 10000

• Find authors who have written a total

10,000 words

(same queries as on previous slide, but

drop keyword DISTINCT)

• For each author, report the total number of

words

SELECT aid, COUNT(*) num

FROM AUTHOR a, AUTH_DOC ad,

DOC_WORDS dw

WHERE a.aid = ad.aid AND

ad.did = dw.did

GROUP BY aid.

• For each author, report average number of

words per paper.

SELECT aid, AVG(num) FROM (

SELECT aid, did, COUNT(*) num

FROM AUTHOR a, AUTH_DOC ad,

DOC_WORDS dw

WHERE …

GROUP BY aid, did) t

GROUP BY aid

• Find author with highest average number

of words per paper

SELECT …

WHERE NOT EXISTS (…)

• Find words used by at least 10 authors

SELECT word

FROM DOC_WORDS

NATURAL JOIN AUTH_DOC

GROUP BY word

HAVING COUNT(DISTINCT aid) >= 10

• Find most frequently used word

SELECT word FROM DOC_WORDS

GROUP BY word

HAVING (COUNT(*)) >= ALL(…)

• Find the largest document

SELECT did FROM DOC_WORDS

GROUP BY did

HAVING COUNT(*) >= ALL(…)

or

HAVING NOT EXISTS(…)

• Find authors who have written the largest

document

SELECT name

FROM author a

WHERE (

SELECT COUNT(word)

FROM DOC_WORDS dw, AUTH_DOC ad

WHERE dw.did = ad.did AND ad.aid = a.aid)

= (SELECT …)

Existential and Universial

Quantifiers

• Our Schema

LIKES(drinker, beer)

FREQUENTS(drinker, bar)

SERVES(bar, beer)

• Find all drinkers that like some beer that is

not served by the bar “Black Cat”

SELECT l.drinker

FROM LIKES l

WHERE l.beer NOT IN (

SELECT s.beer FROM SERVES s

WHERE S.bar = “Black Cat”)

• Find drinkers that frequent some bar that serves some
beer they like

SELECT f.drinker
FROM FREQUENTS f, LIKES l, SERVES s
WHERE l.drinker = f.drinker
AND l.beer = s.beer AND s.bar = f.bar

SELECT f.drinker
FROM FREQUENT f
WHERE f.bar IN (

SELECT bar FROM SERVES
WHERE (drinker, beer) in LIKES)

• Find drinkers that frequent only bars that serves some
beer they like

SELECT drinker
FROM FREQUENTS f
WHERE NOT EXISTS(

SELECT beer FROM SERVES s
WHERE s.bar = f.bar AND
NOT EXISTS(

SELECT drinker
FROM LIKES l
WHERE l.drinker = f.drinker
AND l.beer = s.beer)

• Find drinkers that frequent some bar that serves only
beers they like.

SELECT f.drinker
FROM FREQUENTS f
WHERE EXISTS(

SELECT beer FROM SERVES s
WHERE s.bar = f.bar AND
NOT EXISTS (

SELECT beer FROM Serves s2
WHERE s2.bar = s.bar AND beer NOT IN (

SELECT beer FROM Likes WHERE
Likes.drinker = f.drinker)))

Can you improve this one?

• Find drinkers that frequent only bars that serve
some beer they like

SELECT drinker
FROM FREQUENTS f
WHERE NOT EXISTS (

SELECT beer FROM SERVES s
WHERE s.bar = f.bar AND beer
NOT IN(

SELECT beer FROM Likes l
WHERE l.drinker = f.drinker))

