
TA Section

April 8, 2010

2

Modifying the Database

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

Insertions

General form:

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

Insertions

Product(name, listPrice, category)

Purchase(buyer, seller, product, price)

Missing attribute NULL.

May drop attribute names if give them in order.

INSERT INTO Purchase(buyer, seller, product, price)

VALUES („Joe‟, „Fred‟, „wakeup-clock-espresso-machine‟,

„The Sharper Image‟)

Example: Insert a new purchase to the database:

5

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product

FROM Purchase

WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.

Here we insert many tuples into PRODUCT

6

Deletions

DELETE FROM PURCHASE

WHERE seller = „Joe‟ AND

product = „Brooklyn Bridge‟

Example:

7

Updates

UPDATE PRODUCT

SET price = price/2

WHERE Product.name IN

(SELECT product

FROM Purchase

WHERE Date =„Oct, 25, 1999‟);

Example:

Aggregate Queries

• Our Schema

AUTHOR(aid, name)

AUTH_DOC(aid, did)

DOCUMENT (did, title)

DOC_WORD (did, word)

WORD(word)

AUTHOR DOCUMENT WORDAUTH_DOC DOC_WORDS

• Find authors who wrote more than 20 docs

SELECT name FROM AUTHOR a

WHERE(SELECT COUNT(*) FROM

AUTH_DOC ad WHERE ad.aid = a.aid) > 20

SELECT name FROM AUTHOR a, AUTH_DOC

ad WHERE a.aid = ad.aid GROUP BY a.aid,

a.name HAVING COUNT(*) > 20

• Find authors who have a vocabulary of more
than 10,000 words

SELECT name FROM AUTHOR WHERE
(SELECT COUNT(DISTINCT word) FROM …) >
10000

SELECT name FROM AUTHOR a, AUTH_DOC
ad, DOC_WORDS dw WHERE a.aid = ad.aid
AND ad.did = dw.did GROUP BY a.aid, a.name
HAVING COUNT(DISTINCT word) > 10000

• Find authors who have written a total

10,000 words

(same queries as on previous slide, but

drop keyword DISTINCT)

• For each author, report the total number of

words

SELECT aid, COUNT(*) num

FROM AUTHOR a, AUTH_DOC ad,

DOC_WORDS dw

WHERE a.aid = ad.aid AND

ad.did = dw.did

GROUP BY aid.

• For each author, report average number of

words per paper.

SELECT aid, AVG(num) FROM (

SELECT aid, did, COUNT(*) num

FROM AUTHOR a, AUTH_DOC ad,

DOC_WORDS dw

WHERE …

GROUP BY aid, did) t

GROUP BY aid

• Find author with highest average number

of words per paper

SELECT …

WHERE NOT EXISTS (…)

• Find words used by at least 10 authors

SELECT word

FROM DOC_WORDS

NATURAL JOIN AUTH_DOC

GROUP BY word

HAVING COUNT(DISTINCT aid) >= 10

• Find most frequently used word

SELECT word FROM DOC_WORDS

GROUP BY word

HAVING (COUNT(*)) >= ALL(…)

• Find the largest document

SELECT did FROM DOC_WORDS

GROUP BY did

HAVING COUNT(*) >= ALL(…)

or

HAVING NOT EXISTS(…)

• Find authors who have written the largest

document

SELECT name

FROM author a

WHERE (

SELECT COUNT(word)

FROM DOC_WORDS dw, AUTH_DOC ad

WHERE dw.did = ad.did AND ad.aid = a.aid)

= (SELECT …)

Existential and Universial

Quantifiers

• Our Schema

LIKES(drinker, beer)

FREQUENTS(drinker, bar)

SERVES(bar, beer)

• Find all drinkers that like some beer that is

not served by the bar “Black Cat”

SELECT l.drinker

FROM LIKES l

WHERE l.beer NOT IN (

SELECT s.beer FROM SERVES s

WHERE S.bar = “Black Cat”)

• Find drinkers that frequent some bar that serves some
beer they like

SELECT f.drinker
FROM FREQUENTS f, LIKES l, SERVES s
WHERE l.drinker = f.drinker
AND l.beer = s.beer AND s.bar = f.bar

SELECT f.drinker
FROM FREQUENT f
WHERE f.bar IN (

SELECT bar FROM SERVES
WHERE (drinker, beer) in LIKES)

• Find drinkers that frequent only bars that serves some
beer they like

SELECT drinker
FROM FREQUENTS f
WHERE NOT EXISTS(

SELECT beer FROM SERVES s
WHERE s.bar = f.bar AND
NOT EXISTS(

SELECT drinker
FROM LIKES l
WHERE l.drinker = f.drinker
AND l.beer = s.beer)

• Find drinkers that frequent some bar that serves only
beers they like.

SELECT f.drinker
FROM FREQUENTS f
WHERE EXISTS(

SELECT beer FROM SERVES s
WHERE s.bar = f.bar AND
NOT EXISTS (

SELECT beer FROM Serves s2
WHERE s2.bar = s.bar AND beer NOT IN (

SELECT beer FROM Likes WHERE
Likes.drinker = f.drinker)))

Can you improve this one?

• Find drinkers that frequent only bars that serve
some beer they like

SELECT drinker
FROM FREQUENTS f
WHERE NOT EXISTS (

SELECT beer FROM SERVES s
WHERE s.bar = f.bar AND beer
NOT IN(

SELECT beer FROM Likes l
WHERE l.drinker = f.drinker))

