Introduction to Database Systems CSE 444

Lecture 3: SQL (part 2)

Outline

- Aggregations (6.4.3 6.4.6)
- Examples, examples, examples...
- Nulls (6.1.6 6.1.7)
- Outer joins (6.3.8)

Aggregation

SELECTavg(price)FROMProductWHEREmaker='Toyota'

SELECTcount(*)FROMProductWHEREyear > 1995

SQL supports several aggregation operations:

sum, count, min, max, avg

Except count, all aggregations apply to a single attribute

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT	Count(category)
FROM	Product
WHERE	year > 1995

same as Count(*)

We probably want:

SELECTCount(DISTINCT category)FROMProductWHEREyear > 1995

More Examples

Purchase(product, date, price, quantity)

SELECTSum(price * quantity)FROMPurchase

SELECTSum(price * quantity)FROMPurchaseWHEREproduct = 'bagel'

Simple Aggregations

Purchase

Product	Price	Quantity
Bagel	3	20
Bagel	1.50	20
Banana	0.5	50
Banana	2	10
Banana	4	10

SELECT	<pre>Sum(price * quantity)</pre>
FROM	Purchase
WHERE	product = 'Bagel'

90 (= 60+30)

Grouping and Aggregation

Purchase(product, price, quantity)

Find total quantities for all sales over \$1, by product.

SELECT	product, Sum(quantity) AS TotalSales
FROM	Purchase
WHERE	price > 1
GROUP BY	product

Let's see what this means...

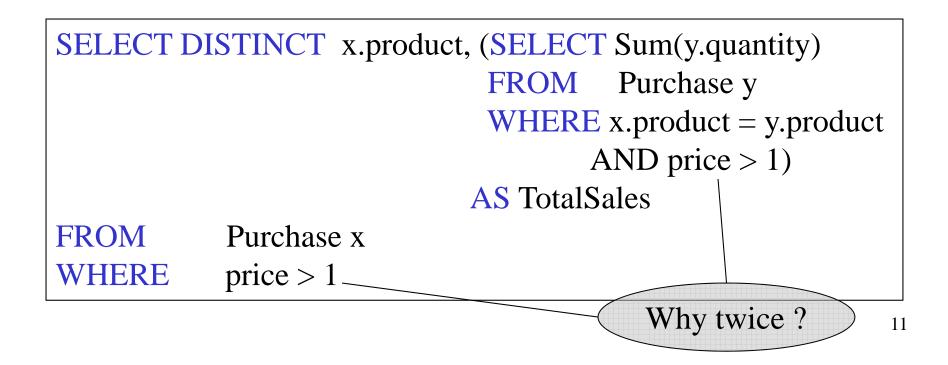
Grouping and Aggregation

- 1. Compute the FROM and WHERE clauses.
- 2. Group by the attributes in the **GROUP BY**
- 3. Compute the **SELECT** clause: grouped attributes and aggregates.

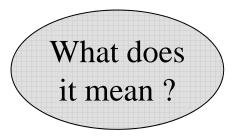
1&2. FROM-WHERE-GROUPBY

Product	Price	Quantity
Bagel	3	20
Bagel	1.50	20
Banana	0.5	50
Banana	2	10
Banana	4	10

SELECT	product, Sum(quantity) AS TotalSales
FROM	Purchase
WHERE	price > 1
GROUP BY	product


3. SELECT

Product	Price	Quantity			
Bagel	3	20	<u> </u>	Product	TotalSales
Bagel	1.50	20		Bagel	40
Banana	0.5	50		Banana	20
Banana	2	10			
Banana	4	10			

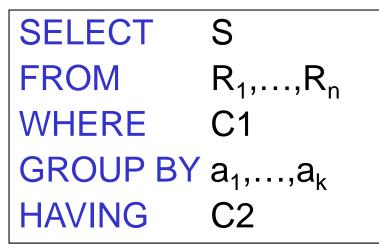

SELECTproduct, Sum(quantity) AS TotalSalesFROMPurchaseWHEREprice > 1GROUPBYproduct

GROUP BY v.s. Nested Queries

SELECT	product, Sum(quantity) AS TotalSales
FROM	Purchase
WHERE	price > 1
GROUP BY	product

Another Example

SELECT	product,
	sum(quantity) AS SumQuantity,
	max(price) AS MaxPrice
FROM	Purchase
GROUP B	Y product

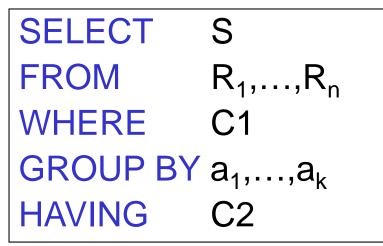

HAVING Clause

Same query as earlier, except that we consider only products that had at least 30 sales.

SELECT	product, Sum(quantity)
FROM	Purchase
WHERE	price > 1
GROUP BY	product
HAVING	Sum(quantity) > 30

HAVING clause contains conditions on aggregates.

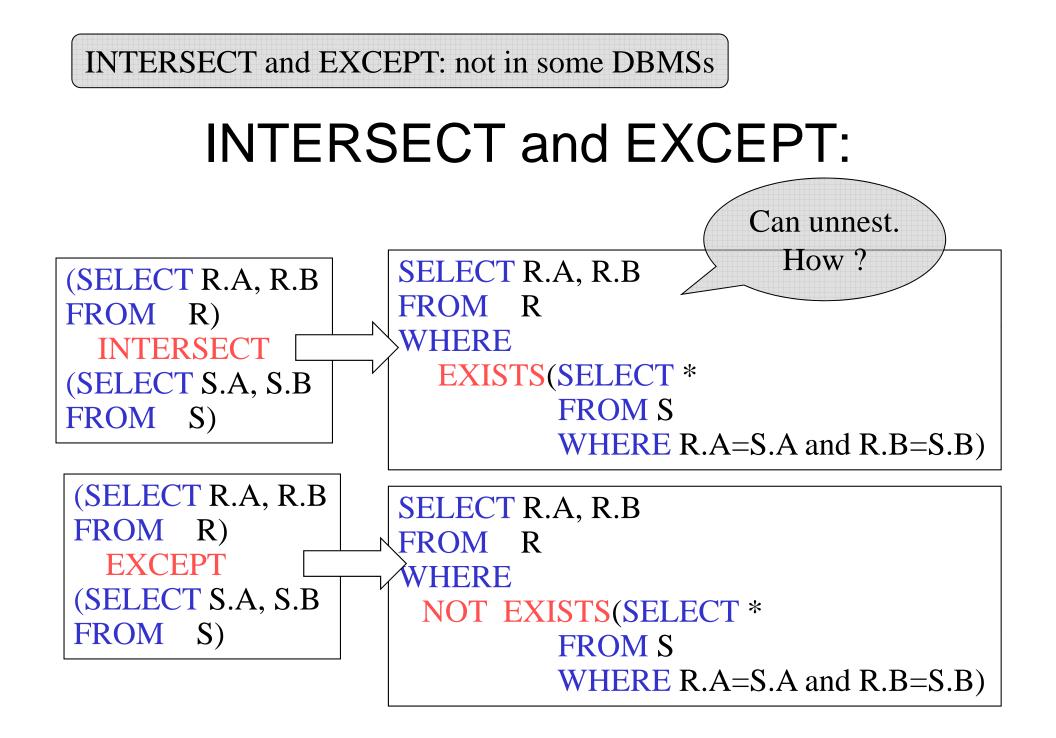
General form of Grouping and Aggregation



- $C1 = is any condition on the attributes in R_1,...,R_n$
- C2 = is any condition on aggregate expressions and on attributes a_1, \dots, a_k

Why?

General form of Grouping and Aggregation



Evaluation steps:

- 1. Evaluate FROM-WHERE, apply condition C1
- 2. Group by the attributes a_1, \ldots, a_k
- 3. Apply condition C2 to each group (may have aggregates)
- 4. Compute aggregates in S and return the result 15

Advanced SQLizing

- 1. Getting around INTERSECT and EXCEPT
- 2. Unnesting Aggregates
- 3. Finding witnesses

Unnesting Aggregates

Product (pname, price, company) Company(cname, city)

Find the number of companies in each city

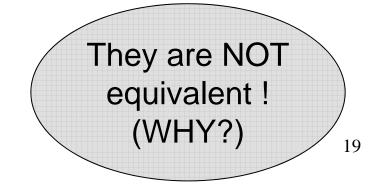
SELECT DISTINCT city, (SELECT count(*) FROM Company Y WHERE X.city = Y.city)

FROM Company X

SELECT city, count(*) FROM Company GROUP BY city Equivalent queries

Note: no need for DISTINCT (DISTINCT *is the same* as $GROUP_{18}BY$)

Unnesting Aggregates


Product (pname, price, company) Company(cname, city) What if there are no products for a city?

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*) FROM Product Y, Company Z WHERE Z.cname=Y.company AND Z.city = X.city)

FROM Company X

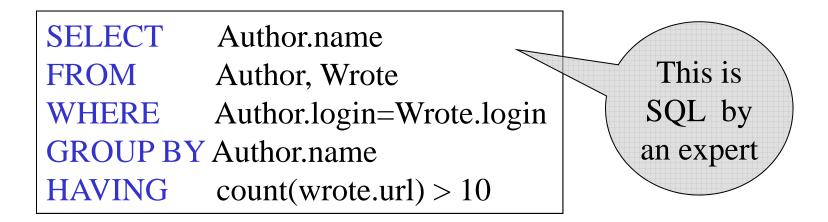
SELECT X.city, count(*) FROM Company X, Product Y WHERE X.cname=Y.company GROUP BY X.city

More Unnesting

Author(login,name)

Wrote(login,url)

- Find authors who wrote \geq 10 documents:
- Attempt 1: with nested queries


a novice
,
ote.login)

This is

SQL by

More Unnesting

- Find all authors who wrote at least 10 documents:
- Attempt 2: SQL style (with GROUP BY)

Store(<u>sid</u>, sname) Product(<u>pid</u>, pname, price, sid)

For each store, find its most expensive products

Finding the maximum price is easy...

SELECT Store.sid, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid

But we need the *witnesses*, i.e. the products with max price

To find the witnesses, compute the maximum price in a subquery

SELECT Store.sname, Product.pname
FROM Store, Product,
 (SELECT Store.sid AS sid, max(Product.price) AS p
 FROM Store, Product
 WHERE Store.sid = Product.sid
 GROUP BY Store.sid) X
WHERE Store.sid = Product.sid
 and Store.sid = X.sid and Product.price = X.p

There is a more concise solution here:

SELECT Store.sname, x.pname FROM Store, Product x WHERE Store.sid – x.sid and x.price >= ALL (SELECT y.price FROM Product y WHERE Store.sid = y.sid)

NULLs in SQL

- Whenever we don't have a value, we can put a NULL
- Can mean many things:
 - Value does not exists
 - Value exists but is unknown
 - Value not applicable
 - Etc.
- The schema specifies for each attribute if can be null (*nullable* attribute) or not
- How does SQL cope with tables that have NULLs?

- If x = NULL then $4^{*}(3-x)/7$ is still NULL
- If x = NULL then x='Joe' is UNKNOWN
- In SQL there are three boolean values:
 FALSE = 0
 UNKNOWN = 0.5
 TRUE = 1

- C1 AND C2 = min(C1, C2)
- C1 OR C2 = max(C1, C2)
- NOT C1 = 1 C1

```
SELECT *
FROM Person
WHERE (age < 25) AND
(height > 6 OR weight > 190)
```

E.g. age=20 height=NULL weight=200

Rule in SQL: include only tuples that yield TRUE

Unexpected behavior:

SELECT *FROMPersonWHEREage < 25</th>ORage >= 25

Some Person tuples are not included !

Can test for NULL explicitly:

- x IS NULL
- x IS NOT NULL

SELECT *FROMPersonWHEREage < 25</th>ORage >= 25ORage ISNULL

Now it includes all Person tuples

Outerjoins

Product(<u>name</u>, category)
Purchase(prodName, store)

An "inner join":

SELECT Product.name, Purchase.storeFROM Product, PurchaseWHERE Product.name = Purchase.prodName

Same as:

SELECT Product.name, Purchase.store FROM Product JOIN Purchase ON Product.name = Purchase.prodName

But Products that never sold will be lost !

Outerjoins

Product(<u>name</u>, category)
Purchase(prodName, store)

If we want the never-sold products, need an "outerjoin":

SELECT Product.name, Purchase.storeFROMProduct LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

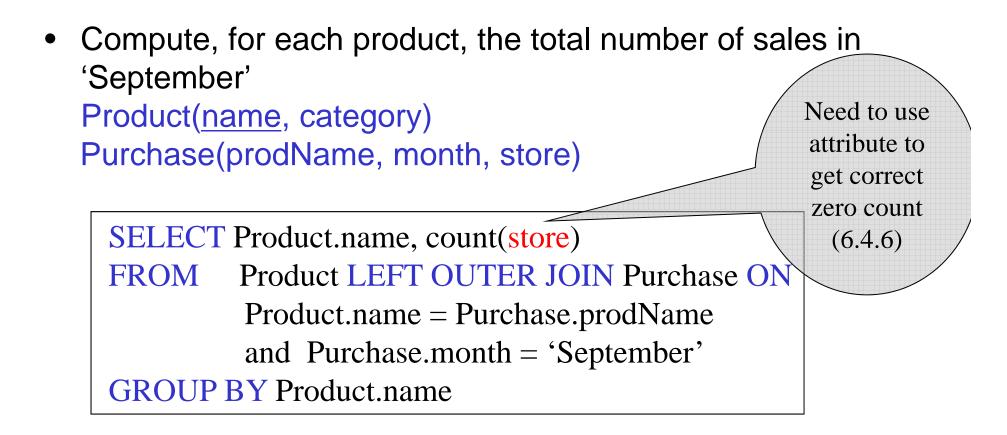
Product

Name	Category
Gizmo	gadget
Camera	Photo
OneClick	Photo

Purchase

ProdName	Store
Gizmo	Wiz
Camera	Ritz
Camera	Wiz

Name	Store
Gizmo	Wiz
Camera	Ritz
Camera	Wiz
OneClick	NULL


Application

 Compute, for each product, the total number of sales in 'September' Product(<u>name</u>, category) Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
and Purchase.month = 'September'
GROUP BY Product.name

What's wrong ?

Application

Now we also get the products who sold in 0 quantity

Outer Joins

- Left outer join:
 - Include the left tuple even if there's no match
- Right outer join:
 - Include the right tuple even if there's no match
- Full outer join:
 - Include both left and right tuples even if there's no match