Introduction to Database Systems CSE 444

Lectures 6-7: Database Design

Outline

- Design theory: 3.1-3.4

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce-Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat

Student

Name	GPA	Courses
Alice	3.8	Math DB Os Bob Carol 3.7 DB Os
Math		

Student

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

Takes

Student	Course
Alice	Course
Carol	Math
Alice	Math
Bob	DB
Alice	OS
Carol	OS
	Math
DB	
OS	

Relational Schema Design

Conceptual Model:

Relational Model: plus FD's

Normalization:
Eliminates anomalies

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	$\underline{\text { SSN }}$	$\underline{\text { PhoneNumber }}$	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN,PhoneNumber)
The above is in 1NF, but was is the problem with this schema?

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

Anomalies:

- Redundancy
= repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number? (what is his city?)

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone:			987-65-4321	908-555-2121

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
- Hence, part of the schema
- Finding them is part of the database design
- Use them to normalize the relations

Functional Dependencies (FDs)

Definition:

If two tuples agree on the attributes

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

then they must also agree on the attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Formally:

$$
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{1}, B_{2}, \ldots, B_{m}
$$

When Does an FD Hold?

Definition: $\quad A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall \mathrm{t}, \mathrm{t}^{\prime} \in \mathrm{R}$,
$\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \Rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}\right)$

if t, t^{\prime} agree here then t, t^{\prime} agree here

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

But not Phone \rightarrow Position

Example

FD's are constraints:

- On some instances they hold
- On others they don't
name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs ?

Example name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office- supp.	59

What about this one?

When Does an FD Hold?

- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD.
- If we say that R satisfies an FD F, we are stating a constraint on R .

An Interesting Observation

name \rightarrow color
If all these FDs are true:
category \rightarrow department color, category \rightarrow price

Then this FD also holds: name, category \rightarrow price

Why ??

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find all FDs
- Then look for the bad ones

Armstrong's Rules (1/3)

```
\(A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{1}, B_{2}, \ldots, B_{m}\)
```

Is equivalent to

Splitting rule and
 Combing rule

$$
\begin{gathered}
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{1} \\
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{2} \\
\ldots \\
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{m}
\end{gathered}
$$

CSE 444 - Summer 2010

Armstrong's Rules (2/3)

$$
A_{1}, A_{2}, \ldots, A_{n} \rightarrow A_{i}
$$

Trivial Rule

where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

Why?

Armstrong's Rules (3/3)

Transitive Rule

If

$$
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{1}, B_{2}, \ldots, B_{m}
$$

and

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

then

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots, A_{n} \rightarrow C_{1}, C_{2}, \ldots, C_{p} \\
& \quad \text { Why ? } \\
& \text { CSE } 444 \text { - Summer } 2010
\end{aligned}
$$

Armstrong's Rules (3/3)

Illustration

	A_{1}	\ldots	$\mathrm{~A}_{\mathrm{m}}$		B_{1}	\ldots	$\mathrm{~B}_{\mathrm{m}}$		C_{1}	\ldots	C_{p}	

Example (continued)

Start from the following FDs:
Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure, $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=$the set of attributes B s.t. $A_{1}, \ldots, A_{n} \rightarrow B$

Example:	$\begin{array}{l}\text { name } \rightarrow \text { color } \\ \text { category } \rightarrow \text { department } \\ \text { color, category } \rightarrow \text { price }\end{array}$

Closures:
name ${ }^{+}=$\{name, color\}
\{name, category\} ${ }^{+}=\{$name, category, color, department, price $\}$ color $^{+}=$\{color $\}$

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.
Repeat until X doesn't change do: if $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}} \rightarrow \mathrm{C}$ is a FD and B_{1}, \ldots, B_{n} are all in X
then $\operatorname{add} \mathrm{C}$ to X .

Example:
name \rightarrow color
category \rightarrow department color, category \rightarrow price
\{name, category\} ${ }^{+}=$
\{ name, category, color, department, price \}
Hence: name, category \rightarrow color, department, price

Example

In class:
$R(A, B, C, D, E, F)$

$$
\left.\begin{array}{l}
A, B \rightarrow \\
A, D \\
B \\
B
\end{array}\right] \quad \text { D }
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$,
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \quad\}$

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $X \rightarrow A$
- Compute X^{+}
- Check if $A \in X^{+}$

Using Closure to Infer ALL FDs

Example: $\left[\begin{array}{lll}\mathrm{A}, \mathrm{B} & \rightarrow & \mathrm{C} \\ \mathrm{A}, \mathrm{D} & \rightarrow & \mathrm{B} \\ \mathrm{B} & \rightarrow & \mathrm{D}\end{array}\right.$
Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}, \\
& \mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}^{+}=\mathrm{ABCD} \text { (no need to compute- why ?) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \quad \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
$$

Step 2: Enumerate all FD's $\mathrm{X} \rightarrow \mathrm{Y}$, s.t. $\mathrm{Y} \subseteq \mathrm{X}^{+}$and $\mathrm{X} \cap \mathrm{Y}=\varnothing$:

$$
\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{~B}
$$

Another Example

- Enrollment(student, major, course, room, time)
student \rightarrow major
major, course \rightarrow room
course \rightarrow time

What else can we infer ? [in class, or at home]

Keys

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- I.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X^{+}for all sets X
- If $X^{+}=$all attributes, then X is a superkey
- List only the minimal X 's to get the keys

Example

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

Examples of Keys

Enrollment(student, address, course, room, time)

student \rightarrow address
room, time \rightarrow course
student, course \rightarrow room, time

(find keys at home or in class)

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What is the key?
\{SSN, PhoneNumber\} Hence SSN \rightarrow Name, City is a "bad" dependency

Key or Keys ?

Can we have more than one key ?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys

Key or Keys ?

Can we have more than one key ?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys

$$
\begin{aligned}
& \mathrm{AB} \rightarrow \mathrm{C} \\
& \mathrm{BC} \rightarrow \mathrm{~A}
\end{aligned} \quad \text { or } \quad \begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~B} \rightarrow \mathrm{AC}
\end{aligned}
$$

what are the keys here ?
Can you design FDs such that there are three keys ?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_{1}, \ldots, A_{n} \rightarrow B$ is a non-trivial dependency in R, then $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently: for all X, either $\left(X^{+}=X\right) \quad$ or $\quad\left(X^{+}=\right.$all attributes $)$

BCNF Decomposition Algorithm

repeat

choose $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ that violates $B C N F$ split R into $R_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$ and $R_{2}\left(A_{1}, \ldots, A_{m}\right.$, [others]) continue with both R_{1} and R_{2}
until no more violations

Is there a
 2-attribute relation that is not in BCNF ?

In practice, we have a better algorithm (coming up)

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What is the key?
\{SSN, PhoneNumber\} use SSN \rightarrow Name, City to split

Example

Name	$\underline{\text { SSN }}$	City
SSN \rightarrow Name, City		
	$123-45-6789$	Seattle
Joe	$987-65-4321$	Westfield

SSN	PhoneNumber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$

Let's check anomalies:

- Redundancy?
- Update ?
- Delete ?

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber) FD1: SSN \rightarrow name, age FD2: age \rightarrow hairColor
Decompose in BCNF (in class):
What is the key?
How to decompose?

BCNF Decomposition Algorithm

BCNF_Decompose(R)
find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$
if (not found) then " R is in BCNF"
let $\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}$
let $\mathrm{Z}=[$ all attributes $]-\mathrm{X}^{+}$ decompose R into $\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})$ and $\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})$ continue to decompose recursively R1 and R2

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber) SSN \rightarrow name, age age \rightarrow hairColor

> Iteration 1: Person
> SSN+ = SSN, name, age, hairColor
> Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age) Hair(age, hairColor)
Phone(SSN, phoneNumber)

What are the keys?

R(A,B,C,D)

Example

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

What happens if in R we first pick B^{+}? Or AB^{+}?

Decompositions in General

$R_{1}=$ projection of R on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$
$R_{2}=$ projection of R on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$

Theory of Decomposition

- Sometimes it is correct:

Lossless decomposition

Incorrect Decomposition

- Sometimes it is not:

Decompositions in General

$$
\text { If } A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}
$$

Then the decomposition is lossless

Note: don't need $A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots, C_{p}$
BCNF decomposition is always lossless. WHY?

Ontin?

- The following four slides are optional
- The content will not be on any exam
- But please take a look because they motivate the need for 3NF
- It's good to know at least why 3NF exists

General Decomposition Goals

1. Elimination of anomalies
2. Recoverability of information

- Can we get the original relation back?

3. Preservation of dependencies

- Want to enforce FDs without performing joins

Sometimes cannot decomposed into BCNF without losing ability to check some FDs

BCNF and Dependencies

Unit	Company	Product

FD's: Unit \rightarrow Company; Company, Product \rightarrow Unit So, there is a BCNF violation, and we decompose.

BCNF and Dependencies

Unit	Company	Product

FD's: Unit \rightarrow Company; Company, Product \rightarrow Unit So, there is a BCNF violation, and we decompose.

Unit \rightarrow Company

No FDs

In BCNF we lose the FD: Company, Product \rightarrow Unit

3NF Motivation

A relation R is in 3rd normal form if :
Whenever there is a nontrivial dep. $A_{1}, A_{2}, \ldots, A_{n} \rightarrow B$ for R, then $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a super-key for R, or B is part of a key.

Tradeoffs
BCNF = no anomalies, but may lose some FDs 3NF = keeps all FDs, but may have some anomalies

