
Introduction to Database Systems
CSE 444

Lecture 12
Transactions: concurrency control

(part 2)

CSE 444 - Summer 2010 1

Outline

• Concurrency control by timestamps (18.8)
• Concurrency control by validation (18.9)y y ()
• Concurrency control by snapshot isolation

• But first, a word about Phantoms…

CSE 444 - Summer 2010 2

Phantom Problem
• So far we have assumed the database to be aSo far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

3CSE 444 – Summer 2010

The Phantom Problem
“Phantom” = tuple visible only during some part of the transaction

T1:
select count(*) from R where price>20 T2:

Phantom tuple visible only during some part of the transaction

. . . .

. . . .

. . . .

. . . .

. . . .
insert into R(name,price)

values(‘Gizmo’ 50). . . .
select count(*) from R where price>20

values(Gizmo , 50)
. . . .

R1(X), R1(Y), R1(Z), W2(New), R1(X), R1(Y), R1(Z), R1(New)

The schedule is conflict serializable yet we get different counts !
4

The schedule is conflict-serializable, yet we get different counts !
Not serializible because of phantoms.

Dealing with Phantoms
• In a static database:In a static database:

– Conflict serializability implies serializability

I d i d t b thi f il d t h t• In a dynamic database, this may fail due to phantoms

• Strict 2PL guarantees conflict serializability, but notStrict 2PL guarantees conflict serializability, but not
serializability

E i f d li ith h t• Expensive ways of dealing with phantoms:
– Lock the entire table, or
– Lock the index entry for ‘price’ (if index is available)

5

– Or use predicate locks (a lock on an arbitrary predicate)

Serializable transactions are very expensive

Concurrency Control Mechanisms

• Pessimistic:
– Locks

• Optimistic
– Timestamp based: basic, multiversion
– Validation

S h t i l ti i t f b th– Snapshot isolation: a variant of both

CSE 444 - Summer 2010 6

Timestamps

• Each transaction receives a unique timestamp
TS(T)

Could be:

• The system’s clock
• A unique counter incremented by the scheduler• A unique counter, incremented by the scheduler

CSE 444 - Summer 2010 7

Timestamps

Main invariant:

The timestamp order defines
the serialization order of the transactionthe serialization order of the transaction

Will generate a schedule that is view-equivalent
to a serial schedule, and is recoverable

CSE 444 - Summer 2010 8

Main IdeaMain Idea

• For any two conflicting actions ensure that• For any two conflicting actions, ensure that
their order is the serialized order:

In each of these casesIn each of these cases
• wU(X) . . . rT(X)
• r (X) w (X)

Read too
late ?

• rU(X) . . . wT(X)
• wU(X) . . . wT(X) Write too

late ?

When T requests r/wT(X), need
t h k TS(U) < TS(T)

late ?

to check TS(U) <= TS(T)
9

Timestamps

With each element X, associate
• RT(X) = the highest timestamp of any

t ti th t d Xtransaction that read X
• WT(X) = the highest timestamp of any

transaction that wrote Xtransaction that wrote X
• C(X) = the commit bit: true when transaction

with highest timestamp that wrote X committedg p

If 1 element = 1 page, these are associated with
each page X in the buffer pooleach page X in the buffer pool

CSE 444 - Summer 2010 10

Time-based Scheduling

• Note: simple version that ignores the commit bit
– If transactions abort, may result in non-recoverable schedule

• Transaction wants to read element X
– If TS(T) < WT(X) then ROLLBACK
– Else read X and update RT(X) to larger of TS(T) or RT(X)

• Transaction wants to write element XTransaction wants to write element X
– If TS(T) < RT(X) then ROLLBACK
– Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
– Otherwise write X and update WT(X) to TS(T)

CSE 444 - Summer 2010 11

Otherwise, write X and update WT(X) to TS(T)

Details

Read too late:
• T wants to read X, and TS(T) < WT(X)() ()

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

CSE 444 - Summer 2010 12

Details

Write too late:
• T wants to write X, and TS(T) < RT(X)() ()

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

CSE 444 - Summer 2010 13

Details

Write too late, but we can still handle it:
• T wants to write X, and

TS(T) >= RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)(Thomas rule)

CSE 444 - Summer 2010 14

Ensuring Recoverable Schedules

• Recall the definition: if a transaction reads an
element, then the transaction that wrote it
must have already committed

• Use the commit bit C(X) to keep track if the
t ti th t l t t X h itt dtransaction that last wrote X has committed

CSE 444 - Summer 2010 15

Ensuring Recoverable Schedules

Read dirty data:
• T wants to read X, and WT(X) < TS(T)() ()
• Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)() () U() T() ()

If C(X)=false, T needs to wait for it to become true

CSE 444 - Summer 2010 16

Ensuring Recoverable Schedules

Need to revise Thomas’ rule:
• T wants to write X, and WT(X) > TS(T)() ()
• Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)() () U() T() ()

If C(X)=false, T needs to wait for it to become true

CSE 444 - Summer 2010 17

Timestamp-based Scheduling

• When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:and decides one of:

• To grant the request or• To grant the request, or
• To rollback T (and restart with later timestamp)
• To delay T until C(X) = true• To delay T until C(X) = true

CSE 444 - Summer 2010 18

Timestamp-based Scheduling
Transaction wants to READ element X

If TS(T) < WT(X) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)se a d upda e () o a ge o S() o ()

Transaction wants to WRITE element X
If TS(T) < RT(X) then ROLLBACKIf TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X)

Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

See book sec 18 8 4 for detailed rules
19CSE 444 – Summer 2010

See book sec. 18.8.4 for detailed rules

Summary of Timestamp-basedSummary of Timestamp based
Scheduling

• Conflict-serializable

• Recoverable
– Even avoids cascading aborts

• Does NOT handle phantomsp

CSE 444 - Summer 2010 20

Multiversion Timestamp

• When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X:
X X XXt, Xt-1, Xt-2, . . .

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

• Let T read an older version, with appropriate
timestampp

CSE 444 - Summer 2010 21

Details

• When wT(X) occurs,
create a new version, denoted Xt where t = TS(T)

• When rT(X) occurs,
find most recent version Xt such that t < TS(T)
N tNotes:
– WT(Xt) = t and it never changes
– RT(Xt) must still be maintained to check legality of writes

• Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSE 444 - Summer 2010 22

Concurrency Control byConcurrency Control by
Validation

• Each transaction T defines a read set RS(T) and a
write set WS(T)
E h t ti d i th h• Each transaction proceeds in three phases:
– Read all elements in RS(T). Time = START(T)
– Validate (may need to rollback). Time = VAL(T)(y) ()
– Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

CSE 444 - Summer 2010 23

Avoid rT(X) - wU(X) Conflicts
VAL(U) FIN(U)

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

U: Read phase Validate Write phase

T: Read phase Validate ?
conflicts

T: Read phase Validate ?

START(T)
IF RS(T) ∩ WS(U) and FIN(U) > START(T)

(U has validated and U has not finished before T begun)
Then ROLLBACK(T)Then ROLLBACK(T)

CSE 444 - Summer 2010 24

Avoid wT(X) - wU(X) Conflicts

START(U) VAL(U) FIN(U)

U: Read phase Validate Write phase

T Read phase Validate Write phase ?
conflicts

T: Read phase Validate Write phase ?

START(T) VAL(T)()
IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)

(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

25CSE 444 - Summer 2010

Snapshot Isolation

• Another optimistic concurrency control method

• Very efficient, and very popular
– Oracle, PostgreSQL, SQL Server 2005

• Prevents many classical anomalies BUT…

• Not serializable (!), yet ORACLE uses it even for
SERIALIZABLE transactions!SERIALIZABLE transactions!

CSE 444 - Summer 2010 26

Snapshot Isolation Rules

• Each transactions receives a timestamp TS(T)

Transaction T sees database snapshot at time TS(T)• Transaction T sees database snapshot at time TS(T)

• When T commits, updated pages are written to disk, p p g

• Write/write conflicts resolved by “first committer wins”
rulerule

• Read/write conflicts are ignoredg

CSE 444 - Summer 2010 27

Snapshot Isolation (Details)

• Multiversion concurrency control:
– Versions of X: Xt1, Xt2, Xt3, . . .

• When T reads X, return XTS(T).

• When T writes X: if other transaction updated X,
abort
– Not faithful to “first committer” rule, because the other

transaction U might have committed after T. But once
we abort T, U becomes the first committer ☺

CSE 444 - Summer 2010 28

What Works and What Not

• No dirty reads (Why ?)
• No inconsistent reads (Why ?)

– A: Each transaction reads a consistent snapshot

• No lost updates (“first committer wins”)• No lost updates (first committer wins)

• Moreover: no reads are ever delayedMoreover: no reads are ever delayed

• However: read-write conflicts not caught !However: read write conflicts not caught !
CSE 444 - Summer 2010 29

Write Skew

T1:
READ(X);
if X >= 50

T2:
READ(Y);
if Y >= 50if X > 50

then Y = -50; WRITE(Y)
COMMIT

if Y > 50
then X = -50; WRITE(X)

COMMIT

In our notation:
R (X) R (Y) W (Y) W (X) C CR1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non serializable !!!

CSE 444 - Summer 2010 30

Non-serializable !!!

Write Skews Can Be Serious

• Acidicland had two viceroys, Delta and Rho
• Budget had two registers: taXes, and spendYng
• They had high taxes and low spending…

Delta: Rho:Delta:
READ(taXes);
if taXes = ‘High’

th { dY ‘R i ’

Rho:
READ(spendYng);
if spendYng = ‘Low’

th {t X ‘C t’then { spendYng = ‘Raise’;
WRITE(spendYng) }

COMMIT

then {taXes = ‘Cut’;
WRITE(taXes) }

COMMIT

31… and they ran a deficit ever since.

Tradeoffs

• Pessimistic Concurrency Control (Locks):
– Great when there are many conflicts
– Poor when there are few conflicts (overhead)Poor when there are few conflicts (overhead)

• Optimistic Concurrency Control (Timestamps):
– Poor when there are many conflicts (rollbacks)

Great when there are few conflicts– Great when there are few conflicts

• Compromise
– READ ONLY transactions → timestamps
– READ/WRITE transactions → locks

CSE 444 - Summer 2010 32

