
Introduction to Database Systems
CSE 444

Lecture 16: Database Tuning

CSE 444 - Summer 2010 1

About the Midterm

• Open book and open notes
– But you won’t have time to read during midterm!
– No laptops, no mobile devices

• Three topics:
1. SQL
2. ER Diagrams
3. Transactions

CSE 444 - Summer 2010 2

More About the Midterm

• Review Lectures 1 through 14
– Read the lecture notes carefully

R d th b k f t d t il t l ti– Read the book for extra details, extra explanations
– Look at the Franklin paper on transactions, ARIES

• Review Project 1 (Project 2 not on any exam)
• Review HW1 and HW2Review HW1 and HW2

• Take a look at sample midtermsTake a look at sample midterms
CSE 444 - Summer 2010 3

Where We Are?

• We just started to learn how a DBMS
executes a query…

• … we started with data storage and indexing

CSE 444 - Summer 2010 4

Data Storage & Indexing: Review

How does a DBMS store data?
– Typically one relation = one file
– Heap file: tuples inside file are not sorted
– Sequential file: tuples sorted on a key

Heap File

Student(sid: int, age: int, …)

Sequential file sorted on sid

30

20

40

1 record 10

20

30

5

40

10
1 page

30

40

Indexes: Motivation

• Index: data structure to speed-up selections
on search key fields for the index

• An index contains a collection of data
entries, and supports efficient retrieval of all
data entries with a given search key value k

CSE 444 - Summer 2010 6

Database Tuning Overview

• The database tuning problem
• Index selection (discuss in detail)()
• Horizontal/vertical partitioning (see lecture 4)
• Denormalization (discuss briefly)(y)

This material is partially based on the book: “Database Management
Systems” by Ramakrishnan and Gehrke, Ch. 20

7CSE 444 - Summer 2010

The Database Tuning Problem

• We are given a workload description
– List of queries and their frequencies
– List of updates and their frequencies
– Performance goals for each type of query

• Perform physical database design
– Choice of indexes

T i th t l h– Tuning the conceptual schema
• Denormalization, vertical and horizontal partition

– Query and transaction tuningQuery and transaction tuning

8CSE 444 - Summer 2010

Indexes in PostgreSQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1_N ON V(N)

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clusteredCLUSTER V USING V2 Makes V2 clustered
CSE 444 - Summer 2010 9

The Index Selection Problem

• Given a database schema (tables, attributes)
• Given a “query workload”:q y

– Workload = a set of (query, frequency) pairs
– The queries may be both SELECT and updates
– Frequency = either a count, or a percentage

• Select a set of indexes that optimizes the
kl dworkload

In general this is a very hard problem
10

In general this is a very hard problem
CSE 444 - Summer 2010

The Index Selection Problem 1

V(M, N, P);

Your workload is this

SELECT * SELECT *

100,000 queries: 100 queries:
Your workload is this

SELECT
FROM V
WHERE N=?

SELECT
FROM V
WHERE P=?

What indexes ?

11CSE 444 - Summer 2010

The Index Selection Problem 2
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100,000 queries: 100 queries:

INSERT INTO V

100,000 queries:

SELECT
FROM V
WHERE N>? and N<?

SELECT
FROM V
WHERE P=?

INSERT INTO V
VALUES (?, ?, ?)

What indexes ?

12CSE 444 - Summer 2010

The Index Selection Problem 3
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100,000 queries: 1,000,000 queries:
Your workload is this

INSERT INTO V

100,000 queries:

SELECT
FROM V
WHERE N=?

SELECT
FROM V
WHERE N=? and P>?

INSERT INTO V
VALUES (?, ?, ?)

What indexes ?

13CSE 444 - Summer 2010

The Index Selection Problem 4
V(M N P)V(M, N, P);

Your workload is this

SELECT *

1,000 queries: 100,000 queries:
Your workload is this

SELECT * SELECT *
FROM V
WHERE P>? and P<?

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?
14

What indexes ?
CSE 444 - Summer 2010

The Index Selection Problem

• SQL Server
– Automatically, thanks to AutoAdmin project

M h l i d f l h j t f– Much acclaimed successful research project from
mid 90’s, similar ideas adopted by the other major
vendors

• PostgreSQL
– You will do it manually, part of project 3
– But tuning wizards also exist (you won’t use these

on project 3!)on project 3!)

15CSE 444 - Summer 2010

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query• Consider relations accessed by query
– No point indexing other relations

Look at WHERE clause for possible search key• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

• To cluster or not?
– Range queries benefit mostly from clusteringg q y g

16

Hash Table v.s. B+ tree

• Rule 1: always use a B+ tree ☺

• Rule 2: use a Hash table on K when:
– There is a very important selection query on

equality (WHERE K=?), and no range queries
– You know that the optimizer uses a nested loop

join where K is the join attribute of the innerjoin where K is the join attribute of the inner
relation (you will understand that in a few lectures)

17CSE 444 - Summer 2010

Balance Queries v.s. Updates

• Indexes speed up queries
– SELECT FROM WHERE

• But they usually slow down updates:
– INSERT, DELETE, UPDATE
– However some updates benefit from indexes

UPDATE RUPDATE R
SET A = 7
WHERE K=55

18CSE 444 - Summer 2010

Tuning the Conceptual Schema

• Index selection

• Horizontal/vertical partitioning (see lecture 4)

• Denormalization

19CSE 444 - Summer 2010

Denormalization

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:
SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?y p y y

How can we speed up this query workload ?

20CSE 444 - Summer 2010

Denormalization

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:

INSERT INTO ProductCompany
SELECT x pid x pname x price y cname y city

ProductCompany(pid, pname, price, cname, city)

SELECT x.pid, x.pname, x.price, y.cname, y.city
FROM Product x, Company y
WHERE x.cid = y.cid

21CSE 444 - Summer 2010

Denormalization

SELECT id

Next, replace the query

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

22

WHERE price < ? and city = ?

CSE 444 - Summer 2010

Issues with Denormalization

• It is no longer in BCNF
– We have the hidden FD: cid Æ cname, city

• When Product or Company are updated, we
need to propagate updates to ProductCompany
– Use RULE in PostgreSQL (see PostgreSQL doc.)
– Or use a trigger on a different RDBMS

S ti t dif th• Sometimes cannot modify the query
– What do we do then ?

23CSE 444 - Summer 2010

Denormalization Using Views

INSERT INTO ProductCompany
SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
FROM Product x Company yFROM Product x, Company y
WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Company AS
24

CREATE VIEW Company AS
SELECT DISTINCT cid, cname, city FROM ProductCompany

