Introduction to Database Systems CSE 444

Lecture 17: Relational Algebra

CSE 444 - Summer 2010

Outline

- Motivation and sets vs. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2

The WHAT and the HOW

- In SQL, we write WHAT we want to get form the data
- The database system needs to figure out HOW to get the data we want
- The passage from WHAT to HOW goes through the **Relational Algebra**

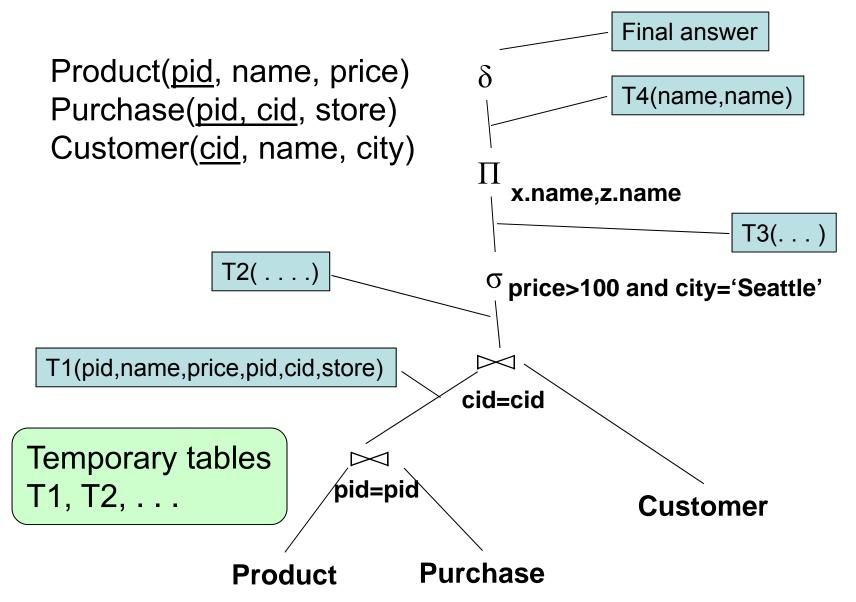
SQL = WHAT

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

> SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = z.cid and x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

Relational Algebra = HOW



Relational Algebra = HOW

The order is now clearly specified:

- Iterate over PRODUCT...
- ...join with PURCHASE...
- ...join with CUSTOMER...
- ...select tuples with Price>100 and City='Seattle'...
- ...eliminate duplicates...
- ...and that's the final answer !

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b}, . . .

Relational Algebra has two flavors:

- Over sets: theoretically elegant but limited
- Over bags: needed for SQL queries + more efficient
 - Example: Compute average price of all products
- We discuss set semantics
- We mention bag semantics only where needed

CSE 444 - Summer 2010

Relational Algebra

- Query language associated with relational model
- Queries specified in an operational manner
 - A query gives a step-by-step procedure

Relational operators

- Take one or two relation instances as argument
- Return one relation instance as result
- Easy to compose into relational algebra expressions

Relational Algebra (1/3)

Five basic operators:

- Union (\cup) and Set difference (–)
- Selection: : $\sigma_{condition}(S)$
 - Condition is Boolean combination (\land,\lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, <=, =, ≠, >=, or >
- Projection: π_{list-of-attributes}(S)
- Cross-product or cartesian product (×)

Relational Algebra (2/3)

Derived or auxiliary operators:

- Intersection (∩), Division (R/S)
- Join: $\mathbb{R} \bowtie_{\theta} \mathbb{S} = \sigma_{\theta}(\mathbb{R} \times \mathbb{S})$
- Variations of joins
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- Rename $\rho_{B1,...,Bn}$ (S)

Relational Algebra (3/3)

Extensions for bags

- Duplicate elimination: δ
- Group by: γ [Same symbol as aggregation]
 Partitions tuples of a relation into "groups"
- Sorting: τ

Other extensions

• Aggregation: γ (min, max, sum, average, count)

Union and Difference

- R1 \cup R2
- Example:
 - ActiveEmployees \cup RetiredEmployees
- R1 R2
- Example:
 - AllEmployees RetiredEmployees

Be careful when applying to bags!

What about Intersection ?

- It is a derived operator
- $R1 \cap R2 = R1 (R1 R2)$
- Also expressed as a join (will see later)
- Example
 - UnionizedEmployees \cap RetiredEmployees

Selection

- Returns all tuples that satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be
 - Boolean combination (\land,\lor) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, <=, =, ≠, >=, or >

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

Projection

- Eliminates columns
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

Semantics differs over set or over bags

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

$\Pi_{\text{Name,Salary}}$ (Employee)

Name	Salary
John	20000
John	60000

Set semantics: duplicate elimination automatic

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

Π (Employed)		
Π _{Name,Salary} (Employee)	Name	Salary
	John	20000
	John	60000
	John	20000

Bag semantics: no duplicate elimination; need explicit δ

18

Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: $R1 \times R2$
- Example:
 - Employee × Dependents
- Very rare in practice; mainly used to express joins

Cartesian Product Example

Employee	
Name	SSN
John	999999999
Tony	77777777
Dependents	
EmployeeSSN	Dname
999999999	Emily
777777777	Joe

Employee x Dependents

Name	SSN	EmployeeSSN	Dname
John	9999999999	999999999	Emily
John	9999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe
•			

CSE 444 - Summer 2010

Renaming

- Changes the schema, not the instance
- Notation: $\rho_{B1,...,Bn}$ (R)
- Example:
 - $\rho_{\text{LastName, SocSocNo}}$ (Employee)
 - Output schema:

Answer(LastName, SocSocNo)

Different Types of Join

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition $\boldsymbol{\theta}$
 - Cross-product followed by selection $\boldsymbol{\theta}$
- Equijoin: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta} (R \times S))$
 - Join condition $\boldsymbol{\theta}$ consists only of equalities
 - Projection π_A drops all redundant attributes
 - By far most used join in practice
- Natural join: $R \bowtie S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on all common attributes (names) in R and in S
 - Projection drops duplicate common attributes

Theta-Join Example

AnonPatient P

AnnonJob J

age	zip	disease
54	98125	heart
20	98120	flu

job	age	zip
lawyer	54	98125
cashier	20	98120

P⊠ _{P.a}	ge=J.age ∧ ∣	P.zip=J.zip ^ P.	age < 50	J
Page	Pzip	disease	iob	Jage

P.age	P.zip	disease	job	J.age	J.zip
20	98120	flu	cashier	20	98120

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	P.zip	disease	job	J.zip
54	98125	heart	lawyer	98125
20	98120	flu	cashier	98120

Natural Join Example

AnonPatient P

AnnonJob J

age	zip	disease
54	98125	heart
20	98120	flu

jobageziplawyer5498125cashier2098120

 $\mathsf{P}\bowtie\mathsf{J}$

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier

So Which Join Is It?

When we write R ⋈ S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

P 🖄 V

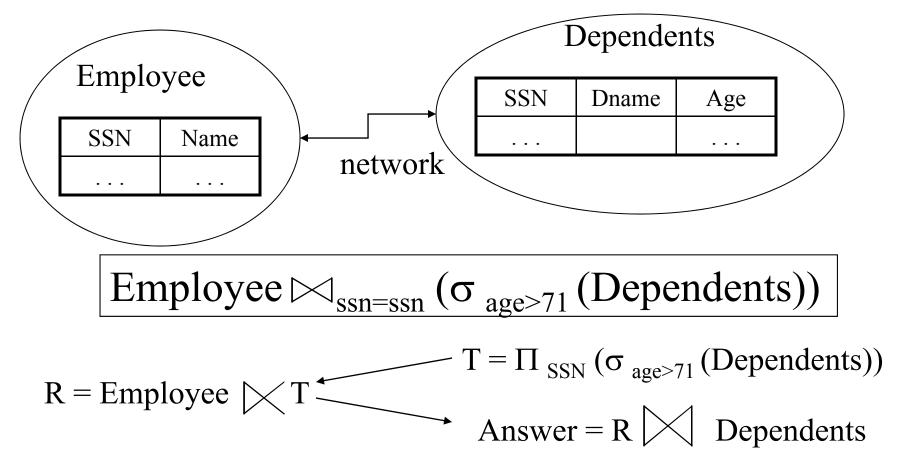
Semijoin

- R▷<S = Π _{A1,...,An} (R▷⊲ S)
- Where A_1, \ldots, A_n are the attributes in R
- Example:
 - Employee >>>> Dependents
- Particularly useful in distributed databases

 Compute the query with minimum amount of data transfer

Semijoins in Distributed Databases

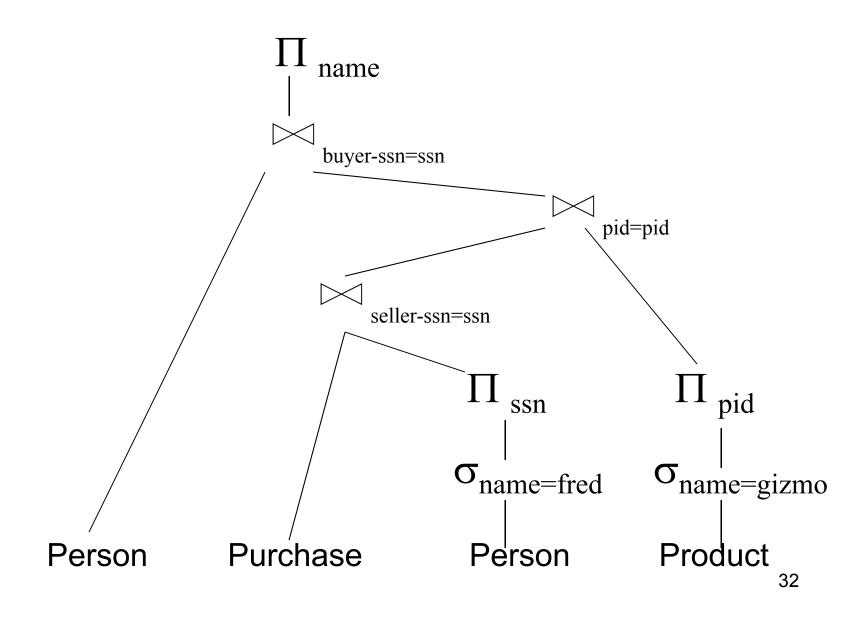
• Semijoins are used in distributed databases



Operators on Bags

- Duplicate elimination δ $\delta(R)$ = select distinct * from R
- Grouping γ $\gamma_{A,sum(B)}$ = select A,sum(B) from R group by A
- Sorting τ

Complex RA Expressions



RA = Dataflow Program

- An Algebra Expression is like a program
 - Several operations
 - Strictly specified order
- But Algebra expressions have limitations

RA and Transitive Closure

• Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write Java program