
Triggers and security

CSE 444 section, July 29, 2010

Today’s agenda

• SQL triggers

• PostgreSQL triggers

• SQL support for restricting database access

Not on agenda!

I won’t tell you how to do project 3:

• Indexes – in class

• Overview of concepts only

– You’ll see the exact Postgres syntax, but not
enough for the project

– Lots omitted, especially with security – see
references

References

Readings from textbook:

• Triggers: 7.5, 8.2.3

• Access control: 10.1

Also: Postgres references linked from project 3
instructions

Today’s agenda

• SQL triggers

• PostgreSQL triggers

• SQL support for restricting database access

What is a trigger?

Trigger: a procedure run automatically by the
DBMS in response to an update to the
database

Trigger = Event + Condition + Action

A trigger in English

Whenever we update a row in table
Product…

If the row’s price attribute has been
reduced…

Then record the product’s name and
discount in table Promotions

EVENT

CONDITION

ACTION

Triggers in standard SQL

Event = INSERT, DELETE, UPDATE

Condition = any WHERE condition

– Can refer to the old and new values

Action = more inserts, deletes, updates

– May result in cascading effects!

Example: row-level trigger

CREATE TRIGGER InsertPromotions AFTER UPDATE OF price ON
Product

REFERENCING
OLD AS x
NEW AS y

FOR EACH ROW
WHEN (x.price > y.price)
INSERT INTO Promotions(name, discount)
VALUES x.name,
(x.price-y.price)*100/x.price

Event

Condition

Action

Events

INSERT, DELETE, UPDATE

Trigger can run:

– BEFORE the event

– AFTER the event

– INSTEAD OF the event

Scope

FOR EACH ROW = trigger executed for every row
affected by the update

REFERENCING OLD ROW AS old_name,

NEW ROW AS new_name

FOR EACH STATEMENT = trigger executed once
for the entire statement

REFERENCING OLD TABLE AS old_name,

NEW TABLE AS new_name

Statement-level trigger

CREATE TRIGGER max_avg_price
AFTER UPDATE OF price ON Product

REFERENCING
OLD TABLE AS OldStuff,
NEW TABLE AS NewStuff

FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price) FROM Product))
BEGIN

DELETE FROM Product
WHERE (name, price, company) IN NewStuff;
INSERT INTO Product
(SELECT * FROM OldStuff);

END;

Using INSTEAD OF

CREATE TRIGGER max_avg_price
INSTEAD OF UPDATE OF price ON Product

REFERENCING
OLD TABLE AS OldStuff,
NEW TABLE AS NewStuff

FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price) FROM

((Product EXCEPT OldStuff) UNION NewStuff)))
BEGIN

DELETE FROM Product
WHERE (name, price, company) IN NewStuff;
INSERT INTO Product
(SELECT * FROM OldStuff);

END;

Trigger pros and cons

• Triggers are very powerful!

– Enforce data correctness (integrity constraints)

– Alert users/admins of strange patterns

– Log events

• But hard to understand (ex. recursive triggers)

• Syntax is vendor specific, varies significantly

– As we will see next...

Today’s agenda

• SQL triggers

• PostgreSQL triggers

• SQL support for restricting database access

Triggers in PostgreSQL

• No conditions

– Instead, use IF/ELSE in action

• Use Postgres’ procedural SQL – PL/pgSQL

– Different syntax from the standard

• 2-part definition

1. Define action as a PL/pgSQL function

2. Create trigger that calls the action function

Postgres trigger example

Example table: employee salaries
CREATE TABLE emp (

empname varchar(100),

salary integer,

last_date timestamp,

last_user varchar(100));

Want to:

• Reject negative salaries

• Record user, date of each update

Defining the triggered action

-- Register PL/pgSQL with the database; do this only once
CREATE LANGUAGE plpgsql;

CREATE FUNCTION emp_stamp() RETURNS trigger AS
$$

BEGIN
IF NEW.salary < 0 THEN

RAISE EXCEPTION 'Salary must be non-negative';
END IF;

NEW.last_date := current_timestamp;
NEW.last_user := current_user;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

Creating the trigger

CREATE TRIGGER emp_stamp
BEFORE INSERT OR UPDATE ON emp

FOR EACH ROW
EXECUTE PROCEDURE emp_stamp();

Today’s agenda

• SQL triggers

• PostgreSQL triggers

• SQL support for restricting database access

SQL authentication

Many SQL DBs have 2 access control concepts:

• Role

– A group with specific privileges (ex. data_entry,
customer_support)

• User

– An individual (ex. John, Fred, my_program)

PostgreSQL: a “user” is just a role that can log in

Access control example

CREATE VIEW PublicCustomers
SELECT name, address
FROM Customers

name address balance

Mary Houston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

Fred is
allowed to
see this

Customers

Fred is not
allowed to
see this

Postgres access control example

-- Set up Fred's account - you need CREATEROLE privilege for this!
CREATE USER fred WITH PASSWORD 'fredpass';

-- Prevent Fred from reading the base table
REVOKE ALL PRIVILEGES ON Customers FROM fred;

-- Create the view that contains what Fred can access
CREATE VIEW PublicCustomers AS

SELECT name, address
FROM Customers;

-- Allow Fred to read the view
GRANT SELECT ON PublicCustomers TO fred;

Alternate approach without views

-- Set up Fred's account - you need CREATEROLE privilege for this!
CREATE USER fred WITH PASSWORD 'fredpass';

-- Prevent Fred from reading the base table
REVOKE ALL PRIVILEGES ON Customers FROM fred;

-- Allow Fred to read only the name and address columns
GRANT SELECT (name, address) ON Customers TO fred;
-- Now SELECT * FROM Customers fails,
-- but SELECT name or SELECT address works

Restricting access to rows

name address balance

Mary Houston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE balance < 0

Customers
Repo men are

not allowed
to see

balances
> 0

Row-level restrictions need views!

-- Create the repo men's group, and make Fred and John repo men
CREATE ROLE repo_men;
GRANT repo_men TO fred;
CREATE USER john WITH PASSWORD 'johnpass'

IN ROLE repo_men;

-- Create the view that repo men can access
CREATE VIEW BadCreditCustomers AS

SELECT *
FROM Customers
WHERE balance < 0;

GRANT SELECT ON BadCreditCustomers TO repo_men;
-- Must use view, because GRANT doesn't support WHERE clause

What if we want to allow updates?

Views can’t be updated! (usually)

But:

• PostgreSQL: rules

– Rewrite the query before the compiler sees it

– Similar to INSTEAD OF triggers

– Use them to map view updates to the base table

• SQL Server: views may be updateable already

– If not, use INSTEAD OF triggers

