
SECTION 6
CSE 444 section, February 11, 2011

Today’s agenda

• Project 3 Introduction

• PostgreSQL Triggers

• Database access control

• Optimistic Concurrency Control (if there’s time)

• Reminder: HW 2 due Friday at 11pm

Project 3

You’re a database administrator at the UW Medical Center.

You want to:

1. Improve efficiency of popular queries (tune db)

2. Maintain integrity with a trigger

• If a nurse deletes a product from the supplies table

• Keep it in the Product and Stock table until the stock goes to zero and

then remove it.

3. Make sure doctors, nurses, administrators, public see

only information that they are allowed to

• Create users, roles, views, grant access

4. Keep system secure

Files

• Import-database.sql

• Import patient/doctor/supplies/etc data

• Import-voters.sql

• Import voter data (for part 3, security)

• DatabaseGenerator.java

• Generates the data for the database.

• TestQueries.java

• Runs queries (use this to measure the efficiency of your database

tuning in part 1)

• Sample-trigger.sql

• Look here when you start writing your trigger!

References

Readings from textbook:

• Triggers: 7.5, 8.2.3

• Access control: 10.1

Also: Postgres references linked from project 3 instructions

What is a trigger?

Trigger: a procedure run automatically by the DBMS in

response to an update to the database

Trigger = Event + Condition + Action

A trigger in English

Whenever we update a row in table

Product…

If the row’s price attribute has been

reduced…

Then record the product’s name

and discount in table Promotions

EVENT

CONDITION

ACTION

EXAMPLE: ROW-LEVEL
TRIGGER

CREATE TRIGGER InsertPromotions AFTER UPDATE OF price ON
Product

REFERENCING
OLD AS x
NEW AS y

FOR EACH ROW
WHEN (x.price > y.price)
INSERT INTO Promotions(name, discount)
VALUES x.name,
(x.price-y.price)*100/x.price

Event

Condition

Action

Events

INSERT, DELETE, UPDATE

Trigger can run:

• BEFORE the event

• AFTER the event

• INSTEAD OF the event

Scope

FOR EACH ROW = trigger executed for every row affected

by the update

 REFERENCING OLD ROW AS old_name,

 NEW ROW AS new_name

FOR EACH STATEMENT = trigger executed once for the

entire statement

 REFERENCING OLD TABLE AS old_name,

 NEW TABLE AS new_name

Statement-level trigger

CREATE TRIGGER max_avg_price
AFTER UPDATE OF price ON Product

REFERENCING
OLD TABLE AS OldStuff,
NEW TABLE AS NewStuff

FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price) FROM Product))
BEGIN
 DELETE FROM Product
 WHERE (name, price, company) IN NewStuff;
 INSERT INTO Product
 (SELECT * FROM OldStuff);
END;

Triggers in standard SQL

Event = INSERT, DELETE, UPDATE

Condition = any WHERE condition

• Can refer to the old and new values

Action = more inserts, deletes, updates

• May result in cascading effects!

Trigger pros and cons

• Triggers are very powerful!

• Enforce data correctness (integrity constraints)

• Alert users/admins of strange patterns

• Log events

• But hard to understand (ex. recursive triggers)

• Syntax is vendor specific, varies significantly

• As we will see next...

Triggers in PostgreSQL

• No conditions

• Instead, use IF/ELSE in action

• Use Postgres’ procedural SQL – PL/pgSQL

• Different syntax from the standard

• 2-part definition

1. Define action as a PL/pgSQL function

2. Create trigger that calls the action function

Postgres trigger example

Example table: employee salaries
CREATE TABLE emp (

 empname varchar(100),

 salary integer,

 last_date timestamp,

 last_user varchar(100));

Want to:

• Reject negative salaries

• Record user, date of each update

Based on PL/pgSQL example in Postgres docs:
http://www.postgresql.org/docs/8.4/static/plpgsql-
trigger.html

Defining the triggered action

-- Register PL/pgSQL with the database; do this only once
CREATE LANGUAGE plpgsql;

CREATE FUNCTION emp_stamp() RETURNS trigger AS
$$
 BEGIN
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION 'Salary must be non-negative';
 END IF;

 NEW.last_date := current_timestamp;
 NEW.last_user := current_user;
 RETURN NEW;
 END;
$$ LANGUAGE plpgsql;

Creating the trigger

CREATE TRIGGER emp_stamp
BEFORE INSERT OR UPDATE ON emp

FOR EACH ROW
EXECUTE PROCEDURE emp_stamp();

SQL authentication

Many SQL DBs have 2 access control concepts:

• Role

• A group with specific privileges (ex. data_entry, customer_support)

• User

• An individual (ex. John, Fred, my_program)

PostgreSQL: a “user” is just a role that can log in

Access control example

CREATE VIEW PublicCustomers
SELECT name, address
FROM Customers

name address balance

Mary Houston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

Fred is
allowed to
see this

Customers

Fred is not
allowed to
see this

Postgres access control example

-- Set up Fred's account - you need CREATEROLE privilege for this!
CREATE USER fred WITH PASSWORD 'fredpass';

-- Prevent Fred from reading the base table
REVOKE ALL PRIVILEGES ON Customers FROM fred;

-- Create the view that contains what Fred can access
CREATE VIEW PublicCustomers AS
 SELECT name, address
 FROM Customers;

-- Allow Fred to read the view
GRANT SELECT ON PublicCustomers TO fred;

Alternate approach without views

-- Set up Fred's account - you need CREATEROLE privilege for this!
CREATE USER fred WITH PASSWORD 'fredpass';

-- Prevent Fred from reading the base table
REVOKE ALL PRIVILEGES ON Customers FROM fred;

-- Allow Fred to read only the name and address columns
GRANT SELECT (name, address) ON Customers TO fred;
-- Now SELECT * FROM Customers fails,
-- but SELECT name or SELECT address works

Restricting access to rows

name address balance

Mary Houston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE balance < 0

Customers
Repo men are

not allowed
to see

balances
> 0

Row-level restrictions need views!

-- Create the repo men's group, and make Fred and John repo men
CREATE ROLE repo_men;
GRANT repo_men TO fred;
CREATE USER john WITH PASSWORD 'johnpass'
 IN ROLE repo_men;

-- Create the view that repo men can access
CREATE VIEW BadCreditCustomers AS
 SELECT *
 FROM Customers
 WHERE balance < 0;
GRANT SELECT ON BadCreditCustomers TO repo_men;
-- Must use view, because GRANT doesn't support WHERE clause

Optimistic Concurrency Control

• Timestamps
• Key Idea: The timestamp order defines the serialization order

• Scheduler maintains:

• TS(T) for all transactions T

• RT(X), WT(X), C(T)

• Multiversion Timestamps
• Keep multiple version of each data element along with the write

timestamp

• Will reduce number of aborts due to read-too-late problem

• Validation
• Transaction informs schedule of its read and write sets before it

validates

