Inductive Learning

Supervised Learning

e Given: Training examples (x, f(x)) for some unknown function f.

e Find: A good approximation to f.

Example Applications

e Credit risk assessment
x: Properties of customer and proposed purchase.

f(x): Approve purchase or not.

e Disease diagnosis
x: Properties of patient (symptoms, lab tests)

f(x): Disease (or maybe, recommended therapy)

¢ Face recognition
x: Bitmap picture of person’s face

f(x): Name of the person.

e Automatic Steering
x: Bitmap picture of road surface in front of car.

f(x): Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

e Situations where there is no human expert
x: Bond graph for a new molecule.
f(x): Predicted binding strength to AIDS protease molecule.

e Situations where humans can perform the task but can’t describe how
they do it.
x: Bitmap picture of hand-written character
f(x): Ascii code of the character

e Situations where the desired function is changing frequently
x: Description of stock prices and trades for last 10 days.

f(x): Recommended stock transactions

e Situations where each user needs a customized function f
x: Incoming email message.

f(x): Importance score for presenting to user (or deleting without presenting).

x1
x2
x3
x4

A Learning Problem

Unknown

Function

—————= vy =f(xl, x2, x3, x4)

Example z7 %9 x3 x4 |y
1 0 0 1 0|0
2 0 1 0 0/0
3 0 0 1 1]1
4 1 0 0 1|1
5 0 1 1 0|0
6 1 1 0 010
7 0 1 0 1|0

Hypothesis Spaces

e Complete Ignorance. There are 2'® = 65536 possible boolean functions over four
input features. We can'’t figure out which one is correct until we’ve seen every possible
input-output pair. After 7 examples, we still have 2° possibilities.

1 T2 T3z T4 | Y
0 0 ¢ 0|7
0 0 0 1|7
0 0 1 0|0
6 0 1 1|1
0 1 ¢ 0|0
6 1 ¢ 1|0
0 1 1 0|0
0 1 1 1|7
1 6 0 0|7
1 0 ¢ 11
1 0 1 0|7
1 0 1 1|7
1 1 ¢ 0|0
1 1 0 1|7
1 1 1 0|7
1 1 1 1|7

Hypothesis Spaces (2)

e Simple Rules. There are only 16 simple conjunctive rules.

Rule Counterexample

=y 1
=Yy

Ty =Y

T3 =Y

T =Y

1 N T =Y
T AN T3 =Y
1 N ZTa=Y
Ta N 3=y
g N xqa =Y
T3 N Ta=Y
T g N T3 =Y
T T N Ta= Yy
T 3 N T4 = Yy

To T3 N Ta=> Yy

W W W W W R W W W W W~ = N W

> > > > > > > > > >

| Ta N T3 NZ4= Y

No simple rule explaing the data. The same is true for simple clauses.

Hypothesis Space (3)

e m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

Counterexample
variables l-of 2-of 3-of 4-of
{z1}
{z2}
{zs}
{za}
{z1, 22}
{z1, z3}
{z1, 24}
{z2, z3}
{z2, 24}
{z3, x4}
{z1, 79, 23}
{z1, T2, T4}
{371;373; $4}
{z2, T3, T4}

{mlz L2, L3, 2','4}

[PV

L W = W W W W W
\
\

el e T T - D e TR - T % T ST Y JURIEE: SO N,
ot

*
¥*
*
R W W W W

ot

Two Views of Learning

e Learning is the removal of our remaining uncertainty. Suppose we knew that
the unknown function was an m-of-n boolean function, then we could use the training

examples to infer which function it is.

e Learning requires guessing a good, small hypothesis class. We can start with

a very small class and enlarge it until it containg an hypothesis that fits the data.

We could be wrong!

e Our prior knowledge might be wrong
e Our guess of the hypothesis class could be wrong
The smaller the hypothesis class, the more likely we are wrong.
Example: z4 A Oneof{x1,x3} = y is also consistent with the training data.
Example: £4 A —z2 = y is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x

values.

Two Strategies for Machine Learning

e Develop Languages for Expressing Prior Knowledge: Rule grammars and

stochastic models.

e Develop Flexible Hypothesis Spaces: Nested collections of hypotheses.

Decision trees, rules, neural networks, cases.

In either case:

e Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

e Training example. An example of the form (x, f(x)).
e Target function (target concept). The true function f.
e Hypothesis. A proposed function A believed to be similar to f.

e Concept. A boolean function. Examples for which f(x) = 1 are called positive ex-
amples or positive instances of the concept. Examples for which f(x) = 0 are called

negative examples or negative instances.

e Classifier. A discrete-valued function. The possible values f(x) € {1,..., K} are called
the classes or class labels.

e Hypothesis Space. The space of all hypotheses that can, in principle, be output by a
learning algorithm.

e Version Space. The space of all hypotheses in the hypothesis space that have not yet

been ruled out by a training example.

Key Issues in Machine Learning

e What are good hypothesis spaces?

Which spaces have been useful in practical applications and why?

e What algorithms can work with these spaces?

Are there general design principles for machine learning algorithms?

e How can we optimize accuracy on future data points?

This is sometimes called the “problem of overfitting”.

e How can we have confidence in the results?

How much training data is required to find accurate hypotheses? (the statistical question)

e Are some learning problems computationally intractable?

(the computational question)

¢ How can we formulate application problems as machine learning prob-

lems? (the engineering question)

A Framework for Hypothesis Spaces

e Size. Does the hypothesis space have a fixed size or variable size?
Fixed-size spaces are easier to understand, but variable-size spaces are generally more

useful. Variable-size spaces introduce the problem of overfitting.

e Randomness. Is each hypothesis deterministic or stochastic?
This affects how we evaluate hypotheses. With a deterministic hypothesis, a training
example is either consistent (correctly predicted) or inconsistent (incorrectly predicted).

With a stochastic hypothesis, a training example is more likely or less likely.

e Parameterization. Is each hypothesis described by a set of symbolic (discrete) choices
or is it described by a set of continuous parameters? If both are required, we say the
hypothesis space has a mixed parameterization.

Discrete parameters must be found by combinatorial search methods; continuous parame-

ters can be found by numerical search methods.

A Framework for Learning Algorithms

e Search Procedure.
Direction Computation: solve for the hypothesis directly.
Local Search: start with an initial hypothesis, make small improvements until a local
optimum.
Constructive Search: start with an empty hypothesis, gradually add structure to it

until local optimum.

e Timing.
Eager: Analyze the training data and construct an explicit hypothesis.
Lazy: Store the training data and wait until a test data point is presented, then construct

an ad hoc hypothesis to classify that one data point.

e Online vs. Batch. (for eager algorithms)
Online: Analyze each training example as it is presented.

Batch: Collect training examples, analyze them, output an hypothesis.

