CSE 451: Operating Systems
Winter 2001

Lecture 4
Processes

Steve Gribble
gribble@cs.washington.edu
323B Sieg Hall

Today’s agenda

¢ Administrivia

* Processes
— units of exection
— ‘living, breathing embodiment of a program’

1/8/01 © 2001 Steve Gribble

Process Management

» This lecture begins a series of topics on processes,
threads, and synchronization
— this is perhaps the most important part of the class

— there definitely will be several questions on these topics on
the midterms and exams

» Today: processes and process management
— what are the OS units of execution?
— how are they represented inside the OS?
— how is the CPU scheduled across processes?

— what are the possible execution states of a process?
¢ and how does the system move between them?

1/8/01 © 2001 Steve Gribble

The Process

» The process is the OS’s abstraction for execution
— the unit of execution

— the unit of scheduling
— the dynamic (active) execution context
¢ compared with program: static, just a bunch of bytes
* Process is often called a job, task, or sequential
process
— asequential process is a program in execution
« defines the instruction-at-a-time execution of a program

1/8/01 © 2001 Steve Gribble

What's in a Process?

» A process consists of (at least):

an address space
the code for the running program
the data for the running program
an execution stack
« traces state of procedure calls made
the program counter (PC), indicating the next instruction
a set of general-purpose processor registers and their values
a set of OS resources
« open files, network connections, sound channels, ...

* The process is a container for all of this state

1/8/01

a process is named by a process ID (PID)
« just an integer (actually, typically a short)

© 2001 Steve Gribble 5

OXFFFFFFFF

address space heap

0x00000000 (text segment)

1/8/01

A process’s address space

stack

(dynamic allocated mem)
3 +— SP

A

f

(dynamic allocated mem)

static data
(data segment)

v code «— pC

© 2001 Steve Gribble 6

Process states

» Each process has an execution state, which indicates
what it is currently doing
— ready: waiting to be assigned to CPU
¢ could run, but another process has the CPU

— running: executing on the CPU
« is the process that currently controls the CPU
¢ pop quiz: how many processes can be running simultaneously?

— waiting: waiting for an event, e.g. I/O
¢ cannot make progress until event happens
» As a process executes, it moves from state to state
— UNIX: run ps, STAT column shows current state
— which state is a process is most of the time?

1/8/01 © 2001 Steve Gribble 7

Process state transitions

Create
S

unschedule

schedule

kill

I/0,
page fault, etc.

 What can cause schedule/unschedule transitions?

1/8/01 © 2001 Steve Gribble 8

Process data structures

* How does the OS represent a process in the kernel?
— at any time, there are many processes, each in its own
particular state
— the OS data structure that represents each is called the
process control block (PCB)
» PCB contains all info about the process
— OS keeps all of a process’ hardware execution state in the
PCB when the process isn’t running
« PC
+ SP
¢ registers
— when process is unscheduled, the state is transferred out of
the hardware into the PCB

1/8/01 © 2001 Steve Gribble 9

PCB

» The PCB is a data structure with many, many fields:
— process ID (PID)

execution state

program counter, stack pointer, registers

memory management info

UNIX username of owner

scheduling priority

accounting info

pointers into state queues

* Inlinux:
— defined int ask_struct (i ncl ude/ | i nux/ sched. h)

— over 95 fields!!!

1/8/01 © 2001 Steve Gribble 10

PCBs and Hardware State

* When a process is running, its hardware state is
inside the CPU
— PC, SP, registers
— CPU contains current values
* When the OS stops running a process (puts it in the
waiting state), it saves the registers’ values in the
PCB
— when the OS puts the process in the running state, it loads
the hardware registers from the values in that process’ PCB
» The act of switching the CPU from one process to
another is called a context switch
— timesharing systems may do 100s or 1000s of switches/s
— takes about 5 microseconds on today’s hardware

1/8/01 © 2001 Steve Gribble 11

State queues

* The OS maintains a collection of queues that
represent the state of all processes in the system
— typically one queue for each state
¢ e.g., ready, waiting, ...

— each PCB is queued onto a state queue according to its
current state

— as a process changes state, its PCB is unlinked from from
gueue, and linked onto another

1/8/01 © 2001 Steve Gribble 12

State queues

Ready queue header

> |netscape pcbr—>| emacs pcb (> Is pch

head ptr 1\ Y

tail ptr

Wait queue header

PEE— catpcb [|netscape pcb

head ptr 1\

tail ptr

» There may be many wait queues, one for each type
of wait (particular device, timer, message, ...)

1/8/01 © 2001 Steve Gribble 13

PCBs and State Queues

PCBs are data structures

— dynamically allocated inside OS memory
When a process is created:

— OS allocates a PCB for it

— OS initializes PCB

— OS puts PCB on the correct queue
As a process computes:

— OS moves its PCB from queue to queue
When a process is terminated:

— OS deallocates its PCB

1/8/01 © 2001 Steve Gribble 14

Process creation

* One process can create another process
creator is called the parent

created process is called the child
UNIX: do ps, look for PPID field

what creates the first process, and when?

* In some systems, parent defines or donates
resources and privileges for its children
— UNIX: child inherits parents userlD field, etc.

» when child is created, parent may either wait for it to
finish, or it may continue in parallel, or both!

1/8/01 © 2001 Steve Gribble 15

UNIX process creation

» UNIX process creation through f or k() system call
— creates and initializes a new PCB
— creates a new address space

— initializes new address space with a copy of the entire
contents of the address space of the parent

— initializes kernel resources of new process with resources of
parent (e.g. open files)

— places new PCB on the ready queue
» thefork() system call returns twice
— once into the parent, and once into the child
— returns the child’s PID to the parent
— returns O to the child

1/8/01 © 2001 Steve Gribble 16

fork()

int main(int argc, char **argv)
{
char *nanme = argv[O0];
int child_pid = fork();
if (child_pid == 0) {
printf(“Child of % is %\n”,
nane, child_pid);

return O;
} else {
printf(“My child is %\n”, child_pid);
return O;
}
}
1/8/01 © 2001 Steve Gribble

17

output

spi nl ock% gcc -0 testparent testparent.c
spi nl ock% ./t est par ent

My child is 486

Child of testparent is O

spi nl ock% ./t est par ent

Child of testparent is O

My child is 486

1/8/01 © 2001 Steve Gribble

18

Fork and exec

* So how do we start a new program, instead of just
forking the old program?
— the exec() system call!
— int exec(char *prog, char ** argv)

* exec()

— stops the current process
loads program ‘prog’ into the address space
initializes hardware context, args for new program
places PCB onto ready queue
note: does not create a new process!

+ what does it mean for exec to return?

— what happens if you “exec csh” in your shell?
— what happens if you “exec Is” in your shell?

1/8/01 © 2001 Steve Gribble 19
UNIX shells
int main(int argc, char **argv)
{
while (1) {
char *cnd = get_next_conmmand();
int child_pid = fork();
if (child_pid == 0) {
mani pul at e STDI N STDOUT/ STDERR fd’ s
exec(cnd) ;
pani c(“exec failed!”);
} else {
wai t (child_pid);
}
}
}
1/8/01 © 2001 Steve Gribble 20

10

1/8/01

© 2001 Steve Gribble

21

11

