CSE 451: Operating Systems
Winter 2004

Module 1
Course Introduction
Ed Lazowska

lazowska@cs.washington.edu
570 Allen Center

Today’s agenda

¢ Administrivia
— course overview
« course staff
« general structure
« your to-do list
— overloading
« OS overview
— functional
* resource mgmt, major issues
— historical
« batch systems, multiprogramming, time shared OS's
* PCs, networked computers

1/4/2004 © 2004 Ed Lazowska & Hank Levy

Course overview

» Everything you need to know will be on the course web
page:

http://www.cs.washington.edu/education/courses/451/CurrentQtr

1/4/2004 © 2004 Ed Lazowska & Hank Levy

« But to tide you over for the next hour ...
— course staff
« Ed Lazowska
« Tom Anderl
* Rick Cox
« Adrienne Noble
— general structure
read the text prior to class
class will supplement rather than regurgitate the text
sections will focus on the project

we really want to encourage discussion, both in class and in
section

1/4/2004 ©2004 Ed Lazowska & Hank Levy

— your to-do list ...

+ please read the entire course web thoroughly, today

« please get yourself on the cse451 email list, today, and check
your email daily

« homework 1 (reading + problems) is posted on the web now;
due Friday

« project 1 is posted on the web now and will be discussed in
section on Thursday; due a week from Friday

1/412004 © 2004 Ed Lazowska & Hank Levy

Overloading

« If you're going to drop this course
— please do it soon!

« If you want to get into this course
— plan for the worst case (we're at our limit of 60 currently)
— but, make sure you've filed a petition with the advisors

1/4/12004 ©2004 Ed Lazowska & Hank Levy

1/4/2004

What is an Operating System?

« An operating system (OS) is:

— a software layer to abstract away and manage details of
hardware resources

— a set of utilities to simplify application development

Applications
0os

Hardware

— “all the code you didn’t write” in order to implement your
application

© 2004 Ed Lazowska & Hank Levy

What is Windows?

soft,

Browsﬂ LlCP/IP ‘

L
Printing

Application ’

.
J

Installer

i

1/4/2004

© John DeTreville, Microsoft Corp.

What is Windows?

Application

1/412004

© John DeTreville, Microsoft Corp.

What is .NET?

eb

Application

1/412004

© John DeTreville, Microsoft Corp.

What is .NET?

Application

2

Extensibility LAﬂnchrony ‘
=

dentity

.
_

Device

1/412004

& security

© John DeTreville, Microsoft Corp.

The OS and hardware

An OS mediates programs’ access to hardware
resources

— Computation (CPU)

— Volatile storage (memory) and persistent storage (disk, etc.)
— Network communications (TCP/IP stacks, ethernet cards, etc.)
— Input/output devices (keyboard, display, sound card, etc.)
The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
— processes (CPU, memory)
— files (disk)
« programs (sequences of instructions)
— sockets (network)

1/4/2004 © 2004 Ed Lazowska & Hank Levy 12

Why bother with an OS?

« Application benefits
— programming simplicity
« see high-level abstractions (files) instead of low-level hardware
details (device registers)
« abstractions are reusable across many programs
— portability (across machine configurations or architectures)
« device independence: 3Com card or Intel card?
* User benefits
— safety
+ program “sees” own virtual machine, thinks it owns computer
« OS protects programs from each other
« OS fairly multiplexes resources across programs
— efficiency (cost and speed)
« share one computer across many users
« concurrent execution of multiple programs

1/4/2004 © 2004 Ed Lazowska & Hank Levy 13

The major OS issues

structure: how is the OS organized?
sharing: how are resources shared across users?

naming: how are resources named (by users or programs)?
security: how is the integrity of the OS and its resources
ensured?

— protection: how is one user/program protected from another?
performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either with
hardware or with a program)?
extensibility: can we add new features?
communication: how do programs exchange information,
including across a network?

1/412004 ©2004 Ed Lazowska & Hank Levy 14

More OS issues...

« concurrency: how are parallel activities (computation and 1/0)
created and controlled?

« scale: what happens as demands or resources increase?

« persistence: how do you make data last longer than program
executions?

« distribution: how do multiple computers interact with each
other?

« accounting: how do we keep track of resource usage, and
perhaps charge for it?

1/4/2004 © 2004 Ed Lazowska & Hank Levy 15

Progression of concepts and form factors

1950 1960 1970 1080 1860 2000
MULTICS
no complers Gma \ disiribated
software shared mulliuser mysienms
batch mulbprocessor
resident nabwo e tault folesant
manitors
UNIX
na compiers
= time mulliuser mullipracessor
resisens shared o takil tolerant
manitars
clusiered
S UNIX

deskiop computers

na compiers

soltware Inferactive muliprocessor
muliser N
Sy UNIX
handheld computers
compllers no
software
Interactive
networked
1/4/2004 © Silberschatz, Galvin and Gagne 16

Multiple trends at work

* “Ontogeny recapitulates phylogeny”
— Ernst Haeckel (1834-1919)
« (“always quotable, even when wrong”)
* “Those who cannot remember the past are
condemned to repeat it”
— George Santayana (1863-1952)
« But new problems arise, and old problems re-define
themselves

— The evolution of PCs recapitulated the evolution of
minicomputers, which had recapitulated the evolution of
mainframes

— But the ubiquity of PCs re-defined the issues in protection
and security

1/4/2004 © 2004 Ed Lazowska & Hank Levy 17

Protection and security as an example

none
OS from my program

your program from my program

my program from my program

access by intruding individuals

access by intruding programs

denial of service

distributed denial of service

spoofing

spam

worms

viruses

stuff you download and run knowingly (bugs, trojan horses)
stuff you download and run unknowingly (cookies, spyware)

1/4/2004 © 2004 Ed Lazowska & Hank Levy 18

OS history

¢ In the very beginning...

— OS was just a library of code that you linked into your
program; programs were loaded in their entirety into
memory, and executed

— interfaces were literally switches and blinking lights
* And then came batch systems

— OS was stored in a portion of primary memory

— OS loaded the next job into memory from the card reader
+ job gets executed
« output is printed, including a dump of memory (why?)
« repeat...

— card readers and line printers were very slow
« so0 CPU was idle much of the time (wastes $$)

1/4/2004 © 2004 Ed Lazowska & Hank Levy 19

Spooling

« Disks were much faster than card readers and
printers
« Spool (Simultaneous Peripheral Operations On-Line)
— while one job is executing, spool next job from card reader
onto disk
« slow card reader I/O is overlapped with CPU
— can even spool multiple programs onto disk
« OS must choose which to run next
« job scheduling
— but, CPU still idle when a program interacts with a peripheral
during execution
— buffering, double-buffering

1/4/2004 ©2004 Ed Lazowska & Hank Levy 20

Multiprogramming

* To increase system utilization, multiprogramming
OSs were invented
— keeps multiple runnable jobs loaded in memory at once
— overlaps 1/0 of a job with computing of another
« while one job waits for I/O completion, OS runs instructions
from another job
— to benefit, need asynchronous I/O devices
+ need some way to know when devices are done
— interrupts
— polling
— goal: optimize system throughput
« perhaps at the cost of response time...

1/4/2004 © 2004 Ed Lazowska & Hank Levy 21

Timesharing

« To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself
— optimize response time, perhaps at the cost of throughput
« Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g. editor), then can jump between
programs and users faster than users can generate load

— permits users to interactively view, edit, debug running
programs (why does this matter?)
* MIT Multics system (mid-1960’s) was the first large
timeshared system
— nearly all OS concepts can be traced back to Multics

1/4/2004 ©2004 Ed Lazowska & Hank Levy 22

Distributed OS

« distributed systems to facilitate use of geographically
distributed resources
— workstations on a LAN
— servers across the Internet
* supports communications between jobs
— interprocess communication
* message passing, shared memory
— networking stacks
« sharing of distributed resources (hardware, software)
— load balancing, authentication and access contral, ...
« speedup isn't the issue
— access to diversity of resources is goal

1/4/2004 © 2004 Ed Lazowska & Hank Levy 23

Parallel OS

« Some applications can be written as multiple parallel
threads or processes
— can speed up the execution by running multiple
threads/processes simultaneously on multiple CPUs
— need OS and language primitives for dividing program into
multiple parallel activities
— need OS primitives for fast communication between activities
« degree of speedup dictated by communication/computation
ratio
— many flavors of parallel computers
* SMPs (symmetric multi-processors)
* MPPs (massively parallel processors)
« NOWSs (networks of workstations)
« computational grid (SETI @home)

1/4/2004 © 2004 Ed Lazowska & Hank Levy 24

Embedded OS

« Pervasive computing
— cheap processors embedded everywhere
— how many are on your body now? in your car?
— cell phones, PDAs, network computers, ...
« Typically very constrained hardware resources
— slow processors
— very small amount of memory (e.g. 8 MB)
— no disk
— typically only one dedicated application

1/4/2004 © 2004 Ed Lazowska & Hank Levy

25

CSE 451

« In this class we will learn:
— what are the major components of most OS’s?
— how are the components structured?
— what are the most important (common?) interfaces?
— what policies are typically used in an OS?
— what algorithms are used to implement policies?
* Philosophy
— you may not ever build an OS

— but as a computer scientist or computer engineer you need
to understand the foundations

— most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you'll need to make
throughout your careers — compromises among and within
cost, performance, functionality, complexity, schedule ...

1/4/2004 ©2004 Ed Lazowska & Hank Levy 2%

