
1

2/29/2004 © 2004 Ed Lazowska & Hank Levy 16

LFS motivation

• As caches get big, most reads will be satisfied from 
the cache

• No matter how you cache write operations, though, 
they are eventually going to have to get back to disk

• Thus, most disk traffic will be write traffic
• If you eventually put blocks (i-nodes, file content 

blocks) back where they came from, then even if you 
schedule disk writes cleverly, there’s still going to be 
a lot of head movement (which dominates disk 
performance)

2/29/2004 © 2004 Ed Lazowska & Hank Levy 17

LFS approach

• Suppose, instead, what you wrote to disk was a log of 
changes made to files
– log includes modified data blocks and modified metadata 

blocks
– buffer a huge block (“segment”) in memory – 512K or 1M
– when full, write it to disk in one efficient contiguous transfer

• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk is just one big long log, consisting of 
threaded segments

2/29/2004 © 2004 Ed Lazowska & Hank Levy 18

Questions

• What happens when a crash occurs?
– you lose some work
– but the log that’s on disk represents a consistent view of the 

file system at some instant in time

• Suppose you have to read a file?
– once you find its current i-node, you’re fine
– i-node maps provide a level of indirection that makes this 

possible
• details aren’t that important

2/29/2004 © 2004 Ed Lazowska & Hank Levy 19

• How do you prevent overflowing the disk (because 
the log just keeps on growing)?
– segment cleaner coalesces the active blocks from multiple 

old log segments into a new log segment, freeing the old log 
segments for re-use

• Again, the details aren’t that important

2/29/2004 © 2004 Ed Lazowska & Hank Levy 20

Tradeoffs

• LFS wins, relative to FFS
– metadata-heavy workloads

• small file writes
• deletes

(metadata requires an additional write, and FFS does this 
synchronously)

• LFS loses, relative to FFS
– many files are partially over-written in random order

• file gets splayed throughout the log


