
1

CSE 451: Operating Systems
Winter 2004

Module 16
Berkeley Log-Structured File System

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

2/24/2004 © 2004 Ed Lazowska & Hank Levy 2

More on caching (applies both to FS and FFS)

• Cache (often called buffer cache) is just part of 
system memory

• It’s system-wide, shared by all processes
• Need a replacement algorithm

– LRU usually

• Even a small (4MB) cache can be very effective
• Today’s huge memories => bigger caches => even 

higher hit ratios
• Many FS’s “read-ahead” into the cache, increasing 

effectiveness even further

2/24/2004 © 2004 Ed Lazowska & Hank Levy 3

Caching writes, vs. reads

• Some applications assume data is on disk after a 
write (seems fair enough!)

• And the FS itself will have (potentially costly!) 
consistency problems if a crash occurs between 
syncs – i-nodes and file blocks can get out of whack

• Solutions:
– “write-through” the buffer cache (slow), or
– “write-behind”: maintain queue of uncommitted blocks, 

periodically flush (unreliable – this is the sync solution), or
– NVRAM: write into battery-backed RAM (expensive), or
– log-structured file system (LFS): we’ll talk about this next!

2/24/2004 © 2004 Ed Lazowska & Hank Levy 4

Impact of huge, highly effective read caches

• Most reads are satisfied from the buffer cache
• Thus, from the point of view of the disk, most traffic is 

write traffic
• So to speed up disk I/O, we need to make writes go 

faster
• But disk performance is limited ultimately by disk 

head movement
• With current file systems and any of the three 

alternatives (write-through, write-behind, or NVRAM), 
adding a block (extending a file) takes several writes 
(to the file and to the metadata), requiring several 
disk seeks

2/24/2004 © 2004 Ed Lazowska & Hank Levy 5

LFS: Basic idea

• An alternative is to use the disk as a log
• A log is a data structure that is written only at one 

end
• If the disk were managed as a log, there would be 

effectively no seeks
• The “file” is always added to sequentially
• New data and metadata (i-nodes, directories) are 

accumulated in the buffer cache, then written all at 
once in large blocks (e.g., segments of .5M or 1M)

• This would greatly increase disk write throughput

2/24/2004 © 2004 Ed Lazowska & Hank Levy 6

LFS vs. UNIX File System or FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

i-node map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS



2

2/24/2004 © 2004 Ed Lazowska & Hank Levy 7

LFS challenges

• Locating data written in the log
– FFS places files in a well-known location, LFS writes data “at 

the end of the log”

• Even locating i-nodes!
– in LFS, i-nodes too go in the log!

• Managing free space on the disk
– disk is finite, and therefore log must be finite
– so cannot always append to log!

• need to recover deleted blocks in old part of log
• need to fill holes created by recovered blocks

• (Note: Reads are the same as UFS/FFS once you 
find the i-node – and writes are a ton faster)

2/24/2004 © 2004 Ed Lazowska & Hank Levy 8

Locating data and i-nodes

• LFS uses i-nodes, like FFS
• LFS appends i-nodes to end of log, like data

– makes them hard to find

• Solution
– use another level of indirection: i-node maps
– i-node maps map file #s (i-node #s) to i-node location
– location of i-node map blocks are kept in a checkpoint region
– checkpoint region has a fixed location
– cache i-node maps in memory for performance

2/24/2004 © 2004 Ed Lazowska & Hank Levy 9

Free space management

• Append-only quickly eats up all disk space
– need to recover deleted blocks

• Solution
– divide log into (large) segments
– thread segments on disk (linked list)

• segments can be anywhere
– reclaim space by cleaning segments

• read segment
• copy live data to end of log
• now have free segment you can reuse!

– cleaning is a big problem
• costly overhead, when do you do it?

– “idleness is not sloth”

2/24/2004 © 2004 Ed Lazowska & Hank Levy 10

Detail: LFS data structures

• i-nodes: as in UNIX, i-nodes contain physical block 
pointers for files
– written as part of the segment

• i-node map: a table indicating where each i-node is 
on the disk
– i-node map blocks are written as part of the segment; a table 

in a fixed checkpoint region on disk points to those blocks

• Segment summary: info on every block in a segment
• Segment usage table: info on the amount of “live”

data in a block

2/24/2004 © 2004 Ed Lazowska & Hank Levy 11

Detail: LFS read and write

• Every write causes new blocks to be added to the 
current segment buffer in memory; when that 
segment is full, it is written to disk

• Reads are no different than in UNIX File System or 
FFS, once we find the i-node for a file (in LFS, using 
the i-node map, which is cached in memory)

• Over time, segments in the log become fragmented 
as we replace old blocks of files with new blocks

• Problem: in steady state, we need to have contiguous 
free space in which to write

2/24/2004 © 2004 Ed Lazowska & Hank Levy 12

Detail: Cleaning

• The major problem for a LFS is cleaning, i.e., 
producing contiguous free space on disk

• A cleaner daeman “cleans” old segments, i.e., takes 
several non-full segments and compacts them, 
creating one full segment, plus free space

• The cleaner chooses segments on disk based on:
– utilization: how much is to be gained by cleaning them
– age: how likely is the segment to change soon anyway



3

2/24/2004 © 2004 Ed Lazowska & Hank Levy 13

LFS summary

• Basic idea is to handle reads through caching and 
writes by appending large segments to a log

• Greatly increases disk performance on writes, file 
creates, deletes, ….

• Reads that are not handled by buffer cache are same 
performance as normal file system

• Pretty hairy
• Requires cleaning daemon to produce clean space, 

which takes additional CPU time
• A noble experiment, but is it worth it???

2/24/2004 © 2004 Ed Lazowska & Hank Levy 14

LFS history

• Designed by Mendel Rosenblum and his advisor John 
Ousterhout at Berkeley in 1991
– Rosenblum went on to become a Stanford professor and to co-

found VMware, so even if this wasn’t his finest hour, he’s OK
• Ex-Berkeley student Margo Seltzer (faculty at Harvard) 

published a 1995 paper comparing and contrasting LFS with 
conventional FFS, and claiming poor LFS performance in some 
realistic circumstances

• Ousterhout published a “Critique of Seltzer’s LFS 
Measurements,” rebutting her arguments

• Seltzer published “A Response to Ousterhout’s Critique of LFS 
Measurements,” rebutting the rebuttal

• Ousterhout published “A Response to Seltzer’s Response,”
rebutting the rebuttal of the rebuttal

2/24/2004 © 2004 Ed Lazowska & Hank Levy 15

• Moral of the story
– If you’re going to do OS research, you need a thick skin
– Very difficult to predict how a FS will be used

• So it’s hard to generate reasonable benchmarks, let alone a 
reasonable FS design

– Very difficult to measure a FS in practice
• depends on a HUGE number of parameters, involving both 

workload and hardware architecture


