CSE 451: Operating Systems
Winter 2004

Module 16
Berkeley Log-Structured File System

Ed Lazowska
lazowska@cs.washington.edu
Allen Center 570

More on caching (applies both to FS and FFS)

Cache (often called buffer cache) is just part of
system memory

It's system-wide, shared by all processes

Need a replacement algorithm

— LRU usually

Even a small (4MB) cache can be very effective
Today’s huge memories => bigger caches => even
higher hit ratios

Many FS’s “read-ahead” into the cache, increasing
effectiveness even further

2/24/2004 ©2004 Ed Lazowska & Hank Levy 2

Caching writes, vs. reads

* Some applications assume data is on disk after a
write (seems fair enough!)

« And the FS itself will have (potentially costly!)
consistency problems if a crash occurs between
syncs — i-nodes and file blocks can get out of whack

« Solutions:

— ‘“write-through” the buffer cache (slow), or

— “write-behind”: maintain queue of uncommitted blocks,
periodically flush (unreliable — this is the sync solution), or

— NVRAM: write into battery-backed RAM (expensive), or
log-structured file system (LFS): we’'ll talk about this next!

2/24/2004 ©2004 Ed Lazowska & Hank Levy

Impact of huge, highly effective read caches

Most reads are satisfied from the buffer cache

Thus, from the point of view of the disk, most traffic is
write traffic

So to speed up disk I/O, we need to make writes go
faster

But disk performance is limited ultimately by disk
head movement

With current file systems and any of the three
alternatives (write-through, write-behind, or NVRAM),
adding a block (extending a file) takes several writes
(to the file and to the metadata), requiring several
disk seeks

2/24/2004 ©2004 Ed Lazowska & Hank Levy 4

LFS: Basic idea

« An alternative is to use the disk as a log

* Alog is a data structure that is written only at one
end

« If the disk were managed as a log, there would be
effectively no seeks

« The “file” is always added to sequentially

* New data and metadata (i-nodes, directories) are
accumulated in the buffer cache, then written all at
once in large blocks (e.g., segments of .5M or 1M)

« This would greatly increase disk write throughput

2/24/2004 ©2004 Ed Lazowska & Hank Levy

LFS vs. UNIX File System or FFS

B i-node
. . directory

filel file2

dirl dir2 D data

Unix File
System

. i-node map

Blocks written to
create two 1-block
files: dirl/filel and

L L] Log-Structured dir2/file2, in UFS and
filel file2 N LFS
File System
212412004 © 2004 Ed Lazowska & Hank Levy 6

LFS challenges

Locating data written in the log
— FFS places files in a well-known location, LFS writes data “at
the end of the log”
Even locating i-nodes!
— in LFS, i-nodes too go in the log!
Managing free space on the disk
— disk is finite, and therefore log must be finite
— so cannot always append to log!
« need to recover deleted blocks in old part of log
« need to fill holes created by recovered blocks
(Note: Reads are the same as UFS/FFS once you
find the i-node — and writes are a ton faster)

2/24/12004 ©2004 Ed Lazowska & Hank Levy 7

Locating data and i-nodes

LFS uses i-nodes, like FFS

LFS appends i-nodes to end of log, like data

— makes them hard to find

Solution

— use another level of indirection: i-node maps

— i-node maps map file #s (i-node #s) to i-node location

— location of i-node map blocks are kept in a checkpoint region
— checkpoint region has a fixed location

— cache i-node maps in memory for performance

2/24/2004 ©2004 Ed Lazowska & Hank Levy 8

.

Free space management

Append-only quickly eats up all disk space
— need to recover deleted blocks
Solution
— divide log into (large) segments
— thread segments on disk (linked list)
+ segments can be anywhere
— reclaim space by cleaning segments
+ read segment
« copy live data to end of log
+ now have free segment you can reuse!
— cleaning is a big problem
« costly overhead, when do you do it?
— ‘“idleness is not sloth”

2/24/2004 ©2004 Ed Lazowska & Hank Levy 9

Detail: LFS data structures

i-nodes: as in UNIX, i-nodes contain physical block
pointers for files

— written as part of the segment

i-node map: a table indicating where each i-node is
on the disk

— i-node map blocks are written as part of the segment; a table
in a fixed checkpoint region on disk points to those blocks

Segment summary: info on every block in a segment

Segment usage table: info on the amount of “live”
data in a block

2/24/2004 ©2004 Ed Lazowska & Hank Levy 10

Detail: LFS read and write

Every write causes new blocks to be added to the
current segment buffer in memory; when that
segment is full, it is written to disk

Reads are no different than in UNIX File System or
FFS, once we find the i-node for a file (in LFS, using
the i-node map, which is cached in memory)

Over time, segments in the log become fragmented
as we replace old blocks of files with new blocks
Problem: in steady state, we need to have contiguous
free space in which to write

212412004 ©2004 Ed Lazowska & Hank Levy 11

Detail: Cleaning

The major problem for a LFS is cleaning, i.e.,
producing contiguous free space on disk

A cleaner daeman “cleans” old segments, i.e., takes
several non-full segments and compacts them,
creating one full segment, plus free space

The cleaner chooses segments on disk based on:

— utilization: how much is to be gained by cleaning them

— age: how likely is the segment to change soon anyway

2/24/2004 ©2004 Ed Lazowska & Hank Levy 12

LFS summary

Basic idea is to handle reads through caching and
writes by appending large segments to a log

Greatly increases disk performance on writes, file
creates, deletes,

Reads that are not handled by buffer cache are same
performance as normal file system

Pretty hairy

Requires cleaning daemon to produce clean space,
which takes additional CPU time

A noble experiment, but is it worth it???

2/24/2004 ©2004 Ed Lazowska & Hank Levy 13

LFS history

Designed by Mendel Rosenblum and his advisor John

Ousterhout at Berkeley in 1991

— Rosenblum went on to become a Stanford professor and to co-
found VMware, so even if this wasn't his finest hour, he's OK

Ex-Berkeley student Margo Seltzer (faculty at Harvard)

published a 1995 paper comparing and contrasting LFS with

conventional FFS, and claiming poor LFS performance in some

realistic circumstances

Ousterhout published a “Critique of Seltzer's LFS

Measurements,” rebutting her arguments

Seltzer published “A Response to Ousterhout’s Critique of LFS

Measurements,” rebutting the rebuttal

Ousterhout published “A Response to Seltzer's Response,”

rebutting the rebuttal of the rebuttal

212412004 ©2004 Ed Lazowska & Hank Levy 14

Moral of the story
— If you're going to do OS research, you need a thick skin
— Very difficult to predict how a FS will be used

« Soit's hard to generate reasonable benchmarks, let alone a
reasonable FS design

— Very difficult to measure a FS in practice

« depends on a HUGE number of parameters, involving both
workload and hardware architecture

2/24/2004 ©2004 Ed Lazowska & Hank Levy 15

