CSE 451: Operating Systems
Winter 2004

Module 23
Operating System Security

Ed Lazowska
lazowska@cs.washington.edu
Allen Center 570

Outline

« Overarching goal: safe sharing

« Authentication

« Authorization

* Reference Monitors

« Contemporary security problems

3/7/12004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift

Safe sharing

* Protecting a single computer with one user is easy
— Prevent everybody else from having access
— Encrypt all data with a key only one person knows

« Sharing resources safely is hard

— Preventing some people from reading private data (e.g.,
grades)

— Prevent some people from using too many resources (e.g.,
disk space)

— Prevent some people from interfering with other programs
(e.g., inserting key strokes / modifying displays)

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift

Why is security hard?

* Security slows things down
« Security gets in the way
« Security adds no value if there are no attacks

* Only the government used to pay for security
— the Internet made us all potential victims
¢ Bugs R Us

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 4

Trusted Computing Base (TCB)

« Think carefully about what you are trusting with your information
— if you type your password on a keyboard, you're trusting:
« the keyboard manufacturer
* your computer manufacturer
« your operating system
« the password library
« the application that's checking the password
— how about typing your credit card number to a web service?
« how about giving your credit card to a waiter?
« TCB = set of components (hardware, software, wetware) that
you trust your secrets with
« Public web kiosks should *not* be in your TCB
« Should your 0S?
— but what if it is promiscuous? (e.g., |E and active-X extensions)
« How about your compiler?
— agreat read: “Reflections on Trusting Trust”

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 5

Security techniques

» Authentication (who are you) — identifying users and
programs

« Authorization (what are you allowed to do) —
determining what access users and programs have to
things
— complete mediation: check every access to every protected

object

* Auditing (what's been going on) — record what users

and programs are doing for later analysis

3/7/12004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 6

Authentication

* How does a computer know who | am?
— user name / password
+ how does it store the password?
« how does it check the password?
« how secure is a password?
— public/private keys
— one-time keys
— biometrics
* What does the computer do with this information?
— assign you an identifier
+ UNIX: 32 bit number stored in process structure

+ Windows NT: 27 byte number, stored in an access token in
kernel

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift

Aside on encryption

« Encryption: takes a key and data and creates ciphertext
— {Attack at dawn}y,,_gys = 29vN&#Injs@a

« Decryption: takes ciphertext and a key and recovers data
— {29vn	njs@aj}key=h8ks! = Attack at dawn
— without key, can’t convert data into ciphertext or vice-versa

« Hashing: takes data and creates a fixed-size fingerprint, or hash
— H(Attack at Dawn) = 183870
— H(attack at dawn) = 465348

— can't determine data from hash or find two pieces of data with same
hash

3/7/12004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 8

Storing passwords

* CTSS (1962): password file {user name, user
identifier, password}

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “lofotc2n”

If a bad guy gets hold of the password file, you're in
deep trouble!

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 9

* Unix (1974): encrypt passwords with passwords

Bob: 14: S6Uu0cYDVATAK
David: 15: J2Z14ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[0ajison

David’s password, “allison,” is encrypted using itself
as the key and stored in that form. Password can be
checked by the system. No problem if someone
steals the file — except for dictionary attacks

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 10

* Unix (1979): salted passwords

K=[001 Bob: 14: T7Vs1dZEWeRcL: 45
~allison392 David: 15: K3AJ50cCM4ZM$: 392
Mary: 16: WX3crwUbmCKLf: 152

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 11

Guessing passwords

* 26 letters used, 7 letters long

— 8 hillion passwords (33 bits)

— Checking 100,000/second breaks in 22 hours

« System should make checking passwords slow

* But most people’s passwords are not random

sequences of letters!

— girlfriend’s/boyfriend’s/spouse’s/dog’s name
« Dictionary attacks have traditionally been incredibly

easy

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 12

Making it harder

« Using symbols and numbers and longer passwords
— 95 characters, 14 characters long
— 1027 passwords = 91 bits
— Checking 100,000/second breaks in 10%*years
« Require frequent changing of passwords
— guards against loaning it out, writing it down, etc.

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 13

Do longer passwords work?

« People can’t remember 14-character strings of
random characters

« People write down difficult passwords
* People give out passwords to strangers
* Passwords can show up on disk

« If you are forced to change your password
periodically, you probably choose an even dumber
one
— “feb04” “mar04” “apr04”

* How do we handle this in CSE?

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 14

Sniffing passwords
« Incredibly, until just a couple of years ago we all

entered cleartext passwords on the network!
— including wireless LANs, where packet sniffing is duck soup!

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 15

Authorization

* How does the system know what I'm allowed to do?
— logically, an authorization matrix:
« objects = things that can be accessed

« subjects/principals = things that can do the accessing (users or
programs)

Alice Bob Carl

/homes Read Read Read

Write Write Write

usr None None Read
3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 16

< Actual implementation is either
— Access Control Lists (ACLs)
— capabilities
(discussed back when we did file systems)
* Most systems use both, in different circumstances

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 17

Protection domain concept

« A protection domain is the set of objects and permissions on
those objects that executing code may access
— e.g. aprocess
* memory
« files
* sockets
— also: a device driver, a user, a single procedure
« Capabilities:
— protection domain defined by what is in the capability list
*« ACLs
— protection domain defined by the complete set of objects code
could access

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 18

How does this get implemented?

« Originally:
— every application had its own security checking code,
— separate set of users
— separate set of objects
— separate kinds of ACLs, capabilities
« This makes the trusted computing base huge!!!
— you have to trust all applications do to this correctly!
* Modern approach: a single reference monitor
— manages identity
— performs all access checks
— small, well-tested piece of code

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 19

Modern security problems

« Confinement
— How do | run code that I don't trust?
+ e.g., RealPlayer, Flash
— How do | restrict the data it can communicate?
— What if trusted code has bugs?
« e.g., Internet Explorer
« Concept of “Least Privilege”

— programs should only run with the minimal amount of privilege
necessary

« Solutions
— Restricted contexts — let the user divide their identity
— ActiveX — make code writer identify self
— Java — use a virtual machine that intercepts all calls
— Binary rewriting — modify the program to force it to be safe

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 20

Restricted contexts

« Add extra identity information to a process
— e.g., both username and program name (mikesw:navigator)
« Use both identities for access checks

— add extra security checks at system calls that use program
name

— add extra ACLs on objects that grant/deny access to the
program
« Allows users to sub-class themselves for less-trusted
programs

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 21

ActiveX

« All code comes with a public-key signature
« Code indicates what privileges it needs

« Web browser verifies certificate

* Once verified, code is completely trusted

_l

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 22

Java

« All problems are solved by a layer of indirection

— All code runs on a virtual machine

— Virtual machine tracks security permissions

— Allows fancier access control models - allows stack walking
« JVM doesn't work for other languages
« Virtual machines can be used with all languages

— Run virtual machine for hardware

— Inspect stack to determine subject for access checks

3/7/2004 ©2004 Ed Lazowska, Hank Levy, & Mike Swift 23

Binary rewriting

« Goal: enforce code safety by embedding checks in
the code

« Solution:
— Compute a mask of accessible addresses
— Replace system calls with calls to special code

Original Code: Rewritten Code:

Iw $a0, 14($s4) and $t6,$s4,0x001FFFO
jal ($s5) lw $a0, 14($t6)

move $a0, $vO and $t6,%$s5, 0x001fff0
jal $printf jal ($t6)

move $a0, $vO
jal $sfi_printf

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 24

