
1

CSE 451: Operating Systems
Winter 2004

Module 23
Operating System Security

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 2

Outline

• Overarching goal: safe sharing
• Authentication
• Authorization
• Reference Monitors
• Contemporary security problems

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 3

Safe sharing

• Protecting a single computer with one user is easy
– Prevent everybody else from having access
– Encrypt all data with a key only one person knows

• Sharing resources safely is hard
– Preventing some people from reading private data (e.g.,

grades)
– Prevent some people from using too many resources (e.g.,

disk space)
– Prevent some people from interfering with other programs

(e.g., inserting key strokes / modifying displays)

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 4

Why is security hard?

• Security slows things down
• Security gets in the way
• Security adds no value if there are no attacks
• Only the government used to pay for security

– the Internet made us all potential victims

• Bugs R Us

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 5

Trusted Computing Base (TCB)

• Think carefully about what you are trusting with your information
– if you type your password on a keyboard, you’re trusting:

• the keyboard manufacturer
• your computer manufacturer
• your operating system
• the password library
• the application that’s checking the password

– how about typing your credit card number to a web service?
• how about giving your credit card to a waiter?

• TCB = set of components (hardware, software, wetware) that
you trust your secrets with

• Public web kiosks should *not* be in your TCB
• Should your OS?

– but what if it is promiscuous? (e.g., IE and active-X extensions)
• How about your compiler?

– a great read: “Reflections on Trusting Trust”

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 6

Security techniques

• Authentication (who are you) – identifying users and
programs

• Authorization (what are you allowed to do) –
determining what access users and programs have to
things
– complete mediation: check every access to every protected

object

• Auditing (what’s been going on) – record what users
and programs are doing for later analysis

2

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 7

Authentication

• How does a computer know who I am?
– user name / password

• how does it store the password?
• how does it check the password?
• how secure is a password?

– public/private keys
– one-time keys
– biometrics

• What does the computer do with this information?
– assign you an identifier

• UNIX: 32 bit number stored in process structure
• Windows NT: 27 byte number, stored in an access token in

kernel

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 8

Aside on encryption

• Encryption: takes a key and data and creates ciphertext
– {Attack at dawn}key=h8JkS! = 29vn	njs@a

• Decryption: takes ciphertext and a key and recovers data
– {29vn	njs@a}key=h8JkS! = Attack at dawn
– without key, can’t convert data into ciphertext or vice-versa

• Hashing: takes data and creates a fixed-size fingerprint, or hash
– H(Attack at Dawn) = 183870
– H(attack at dawn) = 465348
– can’t determine data from hash or find two pieces of data with same

hash

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 9

• CTSS (1962): password file {user name, user
identifier, password}

If a bad guy gets hold of the password file, you’re in
deep trouble!

Storing passwords

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “!ofotc2n”

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 10

• Unix (1974): encrypt passwords with passwords

David’s password, “allison,” is encrypted using itself
as the key and stored in that form. Password can be
checked by the system. No problem if someone
steals the file – except for dictionary attacks

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[0]allison

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 11

• Unix (1979): salted passwords

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

Bob: 14: T7Vs1dZEWeRcL: 45
David: 15: K3AJ5ocCM4ZM$: 392
Mary: 16: WX3crwUbmCKLf: 152

K=[0]allison392

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 12

Guessing passwords
• 26 letters used, 7 letters long

– 8 billion passwords (33 bits)
– Checking 100,000/second breaks in 22 hours

• System should make checking passwords slow

• But most people’s passwords are not random
sequences of letters!
– girlfriend’s/boyfriend’s/spouse’s/dog’s name

• Dictionary attacks have traditionally been incredibly
easy

3

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 13

Making it harder
• Using symbols and numbers and longer passwords

– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• Require frequent changing of passwords
– guards against loaning it out, writing it down, etc.

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 14

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk
• If you are forced to change your password

periodically, you probably choose an even dumber
one
– “feb04” “mar04” “apr04”

• How do we handle this in CSE?

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 15

Sniffing passwords

• Incredibly, until just a couple of years ago we all
entered cleartext passwords on the network!
– including wireless LANs, where packet sniffing is duck soup!

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 16

Authorization

• How does the system know what I’m allowed to do?
– logically, an authorization matrix:

• objects = things that can be accessed
• subjects/principals = things that can do the accessing (users or

programs)

ReadNoneNone/usr

Read
Write

Read
Write

Read
Write

/homes

Read
Write

ReadRead/etc
CarlBobAlice

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 17

• Actual implementation is either
– Access Control Lists (ACLs)
– capabilities

(discussed back when we did file systems)
• Most systems use both, in different circumstances

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 18

Protection domain concept

• A protection domain is the set of objects and permissions on
those objects that executing code may access
– e.g. a process

• memory
• files
• sockets

– also: a device driver, a user, a single procedure
• Capabilities:

– protection domain defined by what is in the capability list
• ACLs

– protection domain defined by the complete set of objects code
could access

4

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 19

How does this get implemented?

• Originally:
– every application had its own security checking code,
– separate set of users
– separate set of objects
– separate kinds of ACLs, capabilities

• This makes the trusted computing base huge!!!
– you have to trust all applications do to this correctly!

• Modern approach: a single reference monitor
– manages identity
– performs all access checks
– small, well-tested piece of code

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 20

Modern security problems

• Confinement
– How do I run code that I don’t trust?

• e.g., RealPlayer, Flash
– How do I restrict the data it can communicate?
– What if trusted code has bugs?

• e.g., Internet Explorer
• Concept of “Least Privilege”

– programs should only run with the minimal amount of privilege
necessary

• Solutions
– Restricted contexts – let the user divide their identity
– ActiveX – make code writer identify self
– Java – use a virtual machine that intercepts all calls
– Binary rewriting – modify the program to force it to be safe

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 21

Restricted contexts

• Add extra identity information to a process
– e.g., both username and program name (mikesw:navigator)

• Use both identities for access checks
– add extra security checks at system calls that use program

name
– add extra ACLs on objects that grant/deny access to the

program

• Allows users to sub-class themselves for less-trusted
programs

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 22

ActiveX

• All code comes with a public-key signature
• Code indicates what privileges it needs
• Web browser verifies certificate
• Once verified, code is completely trusted

Code

Signature / Certificate

Permissions

Written by HackerNet
Signed by VerifySign

Let JavaScript call this

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 23

Java

• All problems are solved by a layer of indirection
– All code runs on a virtual machine
– Virtual machine tracks security permissions
– Allows fancier access control models - allows stack walking

• JVM doesn’t work for other languages
• Virtual machines can be used with all languages

– Run virtual machine for hardware
– Inspect stack to determine subject for access checks

3/7/2004 © 2004 Ed Lazowska, Hank Levy, & Mike Swift 24

Binary rewriting

• Goal: enforce code safety by embedding checks in
the code

• Solution:
– Compute a mask of accessible addresses
– Replace system calls with calls to special code

Original Code:

lw $a0, 14($s4)
jal ($s5)
move $a0, $v0
jal $printf

Rewritten Code:

and $t6,$s4,0x001fff0
lw $a0, 14($t6)
and $t6,$s5, 0x001fff0
jal ($t6)
move $a0, $v0
jal $sfi_printf

