
1

CSE 451: Operating Systems
Winter 2004

Module 7+
Monitor Supplement

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

1/29/2004 © 2004 Ed Lazowska & Hank Levy 2

Monitors

• A monitor is a software module that encapsulates:
– shared data structures
– procedures that operate on the shared data
– synchronization between concurrent threads that invoke

those procedures
• Data can only be accessed from within the monitor

– protects the data from unstructured access
• Synchronization code (calls to synchronization

routines in the thread package) is added by compiler
– why does this help?

• Addresses the key usability issues that arise with
semaphores

1/29/2004 © 2004 Ed Lazowska & Hank Levy 3

A monitor

shared data

waiting queue of threads
trying to enter the monitor

operations (procedures)at most one thread
in monitor at a

time

1/29/2004 © 2004 Ed Lazowska & Hank Levy 4

Monitor facilities

• “Automatic” mutual exclusion
– only one thread can be executing inside at any time

• thus, synchronization “comes for free” with monitor
– if a second thread tries to execute a monitor procedure, it blocks

until the first has left the monitor

• Condition variables
– once inside, a thread may discover it can’t continue, and may

wish to block (or allow some other waiting thread to continue)
– it can wait on a condition variable, or signal others to continue

• condition variables can only be accessed from within monitor
• a thread that waits “steps outside” the monitor (onto a wait queue

associated with that condition variable)
• what happens to a thread that signals depends on the precise

monitor semantics that are used

1/29/2004 © 2004 Ed Lazowska & Hank Levy 5

Two kinds of monitors

• Hoare monitors: signal(c) means
– run waiter immediately
– signaller blocks immediately

• condition guaranteed to hold when waiter runs
– can use “if” rather than “while” in previous example

• but, signaller must restore monitor invariants before signalling!
– cannot leave a mess for the waiter, who will run immediately!

• Mesa monitors: signal(c) means
– waiter is made ready, but the signaller continues

• waiter runs when signaller leaves monitor (or waits)
• condition is not necessarily true when waiter runs again

– must use “while” as in previous example
– signaller need not restore invariant until it leaves the monitor
– being woken up is only a hint that something has changed

• must recheck conditional case

1/29/2004 © 2004 Ed Lazowska & Hank Levy 6

Bounded buffer using Hoare monitors
Monitor bounded_buffer {

buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
if (array “resources” is full, determined maybe by a count)
wait(not_full);

insert “x” in array “resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

if (array “resources” is empty, determined maybe by a count)
wait(not_empty);

*x = get resource from array “resources”
signal(not_full);

}

2

1/29/2004 © 2004 Ed Lazowska & Hank Levy 7

Runtime system calls for Hoare monitors

• EnterMonitor(m) {guarantee mutual exclusion}
• ExitMonitor(m) {hit the road, letting someone else run}
• Wait(c) {step out until condition satisfied}
• Signal(c) {if someone’s waiting, step out and let him run}

1/29/2004 © 2004 Ed Lazowska & Hank Levy 8

Bounded buffer using Hoare monitors
Monitor bounded_buffer {

buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
if (array “resources” is full, determined maybe by a count)
wait(not_full);

insert “x” in array “resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

if (array “resources” is empty, determined maybe by a count)
wait(not_empty);

*x = get resource from array “resources”
signal(not_full);

}

EnterMonitor

EnterMonitor

ExitMonitor

ExitMonitor

1/29/2004 © 2004 Ed Lazowska & Hank Levy 9

Runtime system calls for Hoare monitors

• EnterMonitor(m) {guarantee mutual exclusion}
– if m occupied, insert caller into queue m
– else mark as occupied, insert caller into ready queue
– choose somebody to run

• ExitMonitor(m) {hit the road, letting someone else run}
– if queue m is empty, then mark m as unoccupied
– else move a thread from queue m to the ready queue
– insert caller in ready queue
– choose someone to run

1/29/2004 © 2004 Ed Lazowska & Hank Levy 10

• Wait(c) {step out until condition satisfied}
– if queue m is empty, then mark m as unoccupied
– else move a thread from queue m to the ready queue
– put the caller on queue c
– choose someone to run

• Signal(c) {if someone’s waiting, step out and let him run}
– if queue c is empty then put the caller on the ready queue
– else move a thread from queue c to the ready queue, and put the

caller into queue m
– choose someone to run

1/29/2004 © 2004 Ed Lazowska & Hank Levy 11

Runtime system calls for Mesa monitors

• EnterMonitor(m) {guarantee mutual exclusion}
– …

• ExitMonitor(m) {hit the road, letting someone else run}
– …

• Wait(c) {step out until condition satisfied}
– …

• Signal(c) {if someone’s waiting, give him a shot after I’m
done}
– if queue c is occupied, move one thread from queue c to queue m
– return to caller

1/29/2004 © 2004 Ed Lazowska & Hank Levy 12

• Broadcast(c) {food fight!}
– move all threads on queue c onto queue m
– return to caller

