
1

CSE 451: Operating Systems
Winter 2004

Module 8
Deadlock

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

1/25/2004 © 2004 Ed Lazowska & Hank Levy 2
(Is Google the greatest, or what?)

1/25/2004 © 2004 Ed Lazowska & Hank Levy 3

Definition

• A thread is deadlocked when it’s waiting for an event
that can never occur
– I’m waiting for you to clear the intersection, so I can proceed

• but you can’t move until he moves, and he can’t move until she
moves, and she can’t move until I move

– thread A is in critical section 1, waiting for access to critical
section 2; thread B is in critical section 2, waiting for access
to critical section 1

– I’m trying to book a vacation package to Tahiti – air
transportation, ground transportation, hotel, side-trips. It’s
all-or-nothing – one high-level transaction – with the four
databases locked in that order. You’re trying to do the same
thing in the opposite order.

1/25/2004 © 2004 Ed Lazowska & Hank Levy 4

Resource graph

• A deadlock exists if there is an irreducible cycle in the
resource graph (such as the one above)

1/25/2004 © 2004 Ed Lazowska & Hank Levy 5

Graph reduction

• A graph can be reduced by a thread if all of that
thread’s requests can be granted
– in this case, the thread terminates – all resources are freed –

all arcs (allocations) to it in the graph are deleted

• Miscellaneous theorems (Holt, Havender):
– There are no deadlocked threads iff the graph is completely

reducible
– The order of reductions is irrelevant

• (Detail: resources with multiple units)

1/25/2004 © 2004 Ed Lazowska & Hank Levy 6

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne ©2002

What would cause a
deadlock?

2

1/25/2004 © 2004 Ed Lazowska & Hank Levy 7

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne ©2002 1/25/2004 © 2004 Ed Lazowska & Hank Levy 8

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne ©2002

1/25/2004 © 2004 Ed Lazowska & Hank Levy 9

Approaches to deadlock

• Prevention – don’t let deadlock occur
1. each thread obtains all resources at the beginning; blocks

until all are available
• drawback?

2. resources are numbered; each thread obtains them in
sequence (which means acquiring some before they are
actually needed)
• why does this work?
• pros and cons?

3. each thread states its maximum claim for every resource
type; system runs the Banker’s algorithm at each allocation
request
• if I were to allocate you that resource, and then everyone were

to request their maximum claim for every resource, would
there be a deadlock?

– how do I tell if there would be a deadlock?
• example: a hammer and five screwdrivers

1/25/2004 © 2004 Ed Lazowska & Hank Levy 10

• Detection and correction
– every once in a while, check to see if there’s a deadlock

• how?
– if so, eliminate it

• how?

Approaches (cont’d.)

