TreadMarks:

Shared Memo:
Computing on
Networks of
Workstations

Cristiana Amza, Alan L. Cox, igh-speed networks and improved microprocessor performance
Sandhya Dwarkadas, H are making networks of workstations an appealing vehicle for
Pete Keleher, Honghui Lu, parallel computing. By relying solely on commodity hardware
Ramakrishnan Rajamony, and software, networked workstations can offer parallel processing at a
Weimin Yu, and relatively low cost.

Willy Zwaenepoel A network-of-workstations multiprocessor can be realized as a proces-
Rice University sor bank in which dedicated processors provide computing cycles, or it

can consist of a dynamically varying set of machines that perform long-
running computations during idle periods. In the latter case, the hard-
ware cost is essentially zero, since many organizations already have
extensive workstation networks.

In terms of performance, networked workstations approach or exceed
supercomputer performarce for some applications. These loosely cou-
pled multiprocessors will by no means replace the more tightly coupled
designs, which, because of lower latencies and higher bandwidths, are
more efficient for applications with stringent synchronization and com-
Shared memory facilitates munication requirements. However, advances in networking technology

and processor performance are expanding the class of applications that
the transition from sequential can be executed efficiently on networked workstations.

to parallel processing. Since DSM OVERVIEW

In this article, we discuss our experience with parallel computing on

most data structures can networks of workstations using the TreadMarks distributed shared mem-

ory (DSM) system. DSM allows processes to assume a globally shared vir-

be retained, simply adding tual memory even though they execute on nodes that do not physically
share memory.t .)

synchronization achieves Figure 1 illustrates a DSM system consisting of N networked work-

stations, each with its own memory. The DSM software provides the

correct, efficient programs abstraction of a globally shared memory, in which each processor can

) access any data item without the programmer having to worry about

for many applications. where the data is or how to obtain its value. In contrast, the “native,” or

Computer 0018-9162/96/$5.00 © 1996 |EEE"

message passing, programming model on workstation
networks requires the programmer to specify inter-
processor communication—a daunting task for programs
with complex data structures and sophisticated paral-
lelization strategies.

In a DSM system, the programmer can focus on devel-
oping algorithms instead of managing partitioned data
sets and communicating values. Also, since DSM provides
the same programming environment as hardware shared-
memory multiprocessors, programs written for a DSM sys-
tem are easily ported to a shared memory multiprocessor.
However, porting from a hardware shared-memory mul-
tiprocessor to a DSM system may require more modifica-
tions because the DSM system’s higher latencies put a
greater value on locality of memory access.

The programming interfaces to DSM systems may dif-
fer in various respects. Here, we focus on the memory
structure and consistency model. An unstructured memory
appears as a linear array of bytes, but in a structured mem-
ory, processes access memory in terms of objects or tuples.
The consistancy model refers to how shared memory
updates become visible to the system’s processes. The intu-
itive model is that a read should always return the last
value written. Unfortunately, the notion of “the last value
written” is not well defined in a distributed system. A more
precise notion is sequential consistency, in which all
processes see memory as if they were exe-

Network

Shared memory

Figure 1. Distributed shared memory: Each proces-
sor sees a shared address space, denoted by the
dashed outline, rather than a collection of
distributed address spaces.

SHARED MENIORY PROGRAMMING

Application programming interface

The TreadMarks API is simple but powerful (see Figure
2 for the C language interface). It provides facilities for
process creation and destruction, synchronization, and
shared memory allocation. Memory allocated by
Tmk_malloc() is shared. Memory allocated statically or
by a call to malloc() is private to each process.

Understanding the purpose of the synchronization

cuting on a single multiprogrammed
processor.? With sequential consistency,
the notion of “the last value written” is pre-
cisely defined. The simplicity of this model
may, however, exact a high price in terms
of performance; therefore, much research
has been done on relaxed memory models.

/* the maximum number of parallel processes supported by TreadMarks */
#define TMK_NPROCS
/* the actual number of parallel processes in a particular execution */

extern unsigned Tmk_nprocs;

One distinguishing feature of a DSM
implementation is whether it uses the vir-

tual-memory page-protection hardware to -

detect shared memory accesses. The naive
use of virtual-memory protection hardware
may lead to poor performance because of
discrepancies between the machine’s page
size and the application’s granularity of
sharing.

Our system, TreadMarks,® provides
shared memory as a linear array of bytes
via arelaxed memory model called release
consistency. The implementation uses the
virtual memory hardware to detect
accesses, but it uses a multiple-writer pro-
tocol to alleviate problems caused by mis-
matches between page size and application
granularity.

TreadMarks runs at the user level on
Unix workstations, without kernel modifi-
cations or special privileges and with stan-
dard Unix interfaces, compilers, and
linkers. As a result, the system is fairly
portable and has been ported to a number
of platforms. These include IBM RS-6000,
SP-1, and SP-2; DEC Alpha and DEC-
Station, as well as Hewlett-Packard, Silicon
Graphics, and Sun systems.

/* the process id, an integer in the range 0 ... Tmk_nprocs - 1 */

extern unsigned Tmk_proc_id;

/* the number of lock synchronization objects provided by TreadMarks */
#define TMK_NLOCKS

/* the number of barrier synchronization objects provided by TreadMarks */
#define TMK_NBARRIERS

/* Initialize TreadMarks and start the remote processes. */

void Tmk_startup(int argc, char **argv)

/* Terminate the calling process. Other processes are unaffected. */

void Tmk_exit(int status)

/* Block the calling process until every other process arrives at the barrier. */
void Tmk_barrier(unsigned id)

/* Block the calling process until it acquires the specified lock. */

void Tmk_lock_acquire(unsigned id)

/* Release the specified lock. */

void Tmk_lock_release(unsigned id)

/* Allocate the specified number of bytes of shared memory. */

char *Tmk_malloc(unsigned size)

/* Free shared memory allocated by Tmk_malloc. */

void Tmk_free(char *ptr)

Figure 2. TreadMarks C interface.

February 1996

primitives is essential to programming with TreadMarks.
Synchronization primitives let the programmer specify
ordering constraints between different processes’ con-
flicting shared-memory accesses. Two
shared-memory accesses are said to con-
flict if they are issued by different proces-
sors to the same memory location and at
least one access is a write. Parallel pro-
grams are subject to data races, a bug that
makes execution timing-dependent, if
there is no synchronization between two
conflicting accesses. For example, if one
access is a read and the other is a write,
other execution orders may cause different
outcomes for each execution. Data races
can be avoided by introducing synchro-
nization.

TreadMarks provides two synchroniza-
tion primitives: barriers and exclusive locks. A process waits
at a barrier by calling Tmk_barrier(). Barriers are global:
The calling process is stalled until all processes arrive at the
same barrier. ATmk _lock acquire() call acquires alock for
a calling process, and Tmk_lock_release() releases it. No
process can acquire alock while anotheris holding it. Alock
can be used to implement critical sections. However, these
particular synchronization primitives are not fundamental
to TreadMarks’ design, and we may add other primitives
later.

Two simple illustrations

Two simple problems (larger applications are discussed
later) illustrate the TreadMarks API. Jacobi iteration
(Figure 3) shows the use of barriers, and the traveling
salesman problem (Figure 4) shows the use of locks.

JACOBI ITERATION. Jacobi is a method for solving par-
tial differential equations. Our exampleiterates over a two-
dimensional array. During each iteration, every matrix
element is updated to the average of its nearest neighbors
(above, below, left, and right). Jacobi uses a scratch array
to store new values to avoid overwriting an element’s old
value before it is used by its neighbor. In the parallel ver-
sion, all processors are assigned roughly equal-size bands
of rows. Neighboring processes share the rows on a band’s
boundary.

The TreadMarks version of Jacobi iteration (Figure 3)
uses two arrays: a grid array allocated in shared memory
and a scratch array private to each process. The grid array
is allocated and initialized by process 0. Synchronization
is by means of barriers. Tmk_barrier(0) guarantees that
process 0 completes initialization before processes start
computing. Tmk_barrier(1) ensures that no processor
overwrites a grid value before all processors have read the
value computed in the previous iteration. Tmk_barrier(2)
prevents any processor from starting the next iteration
before all grid values computed in the current iteration
are written. In other words, this barrier avoids a data race
betweeri the writes in the second nested loop and the reads
in the first nested loop of the next iteration.

TRAVELING SALESMAN PROBLEM. TSP uses a simple
branch-and-bound algorithm to find the shortest route

Computer

that starts at a designated city, passes through every other
city on the map once, and returns to the original city. The
program maintains the length of the shortest route found
sofarin Shortest_length. Partial routes are
expanded one city at a time. If the current
length of a partial route plus alower bound
on the remaining portion is longer than the
current shortest tour, that route is not"
explored further, because it cannot lead to
a shorter total. The lower bound is com-
puted by a fast, conservative approxima-
tion of the length of the minimum
spanning tree connecting all nodes not yet
in the trip with the current route’s first and
last nodes.

The sequential TSP program keeps a
queue of partial tours, with the most promis-
ing one at the head. Promise is determined
by the sum of the length of the current tour and the lower
bound on the length to connect the remaining cities. The
program adds partial tours until a partial tour longer than
a threshold number of cities reaches the top of the queue.
Itremoves this partial tour and tries all permutations of the
remaining cities. Next, the program compares the shortest
tour including this partial tour with the current shortest
tour and, if necessary, updates. it. Finally, the program
returns to the tour queue and tries again to remove a promiss
ing partial tour of sufficient length. : :

Figure 4 shows pseudocode for the parallel TreadMarks
TSP program. Process 0 allocates the shared data struc-
tures (the queue and the minimum length). Exclusive
access is achieved by surrounding all accesses to these
shared data structures by alock acquire and alock release.
All processes wait at Tmk_barrier(0) to ensure proper ini-
tialization before computation. Each process then acquires
the queue lock to find a promising partial tour thatislong
enough to expand sequentially. When such a touris found,
the process releases the queue lock. After expanding the
current partial tour, a process acquires the lock on the min-
imum length, updates the minimum length if necessary,
and then releases the lock. This process continues until
the queue is empty.

IMPLENMENTATION CHALLENGES

DSM systems can either migrate or replicate data to
implement the shared memory abstraction. Most DSM sys-
tems replicate data because that approach gives the best
performance for a wide range of application parameters.*
With replicated data, memory consistency is central to the
systerm, since the DSM software must control replication
in a manner that provides a single shared-memory abstrac-
tion.

The consistency model defines the expected memory
behavior for the programmer. The first DSM system, Ivy,’
implemented sequential consistency.? In this memory
model, processes observe shared memory as if they were
executing on a multiprogrammed uniprocessor with a sin-
gle memory. In other words, all memory accesses are
totally ordered, and the order is compatible with the pro-
gram’s memory access order in each process.

Ivy’s implementation of sequential consistency uses the
virtual memory hardware to maintain memory consistency.

#define M 1024
#define N 1024

float **grid;

float scratch{M][N];

/* shared array */
/* private array */

main()

{
Tmk_startup();

if(Tmk_proc_id == 0) {
grid = Tmk_malloc(M*N*sizeof(float));
initialize grid;

Tmk_barrier(0);

length = M/ Tmk_nprocs;
begin = length * Tmk_proc_id;
end = length * (Tmk_proc_id+1);

for(number of iterations) {
for(i=begin; i<end; i++)
for(j=0; j<N; j++)
scratch[illjl = (grid[i-11[]+grid[i+1][j]+
gridlil{j-11grid[il[j+11)/4;
Tmk_barrier(1);
for(i=begin; i<end; i++)
for(j=0; j<N; j++)
gridlil[j] = scratchl[il[jl;

Tmk_barrier(2);

Figure 3. Pseudocode for the TreadMarks Jacobi pro-
gram.

The local (physical) memories of each processor form a
cache on the global virtual address space (see Figure 5).
When a page is not in a processor’s local memory, a page
fault occurs. The DSM software brings an up-to-date copy
of that page from its remote location into local memory and
restarts the process. Figure 5 shows the activity for a page
fault at processor 1, which results in retrieval of a copy from
processor 3’s local memory. For a read fault, the page is
replicated with read-only access for all replicas. For a write
fault, an invalidate message is sent to all processors with
copies of the page. Each processor receiving this message
invalidates its copy and sends an acknowledgment to the
. writer. As a result, the writer’s copy of the page becomes
the sole copy.

Because of its simplicity and intuitive appeal, sequential
consistency is generally viewed as a “natural” consistency
model. However, its implementation can cause extensive
communication, which is expensive on a workstation net-
work. Sending a message can involve traps into the operat-
ing system kernel, interrupts, context switches, and
execution of several networking software layers. Therefore,
the number of messages and the amount of data exchanged
must be kept low.

queue_type *Queue;

int *Shortest_length;

int queue_lock_id, min_lock_id;
main()

{

Tmk_startup();

queue_lock_id = 0;

min_lock_id = 1;

if (Tmk_proc_id == 0) {
Queue = Tmk_malloc(sizeof(queue_type));
Shortest_length = Tmk_malloc(sizeof(int));
initialize Queue and Shortest_length;

}
Tmk_barrier(0);

while(true) do {
Tmk_lock_acquire(queue_lock_id);
if(queue is empty) {
Tmk_lock_release(queue_lock_id);
Tmk_exit();

Keep adding to queue until a long,

promising tour appears at the head;

Path = Delete the tour from the head;
Tmk_lock_release(queue_lock_id);

length = recursively try all cities not on Path,
find the shortest tour length

Tmk_lock_acquire(min_lock_id);
if (length < *Shortest_length)
*Shortest_length = length;

Tmk_lock_release(min_lock_id);

Figure 4. Pseudocode for the TreadMarks traveling
salesman program.

Figure 5. Operation of the vy DSM system.

Ivy encountered several communication problems. For
example, updating the current shortest tour in the trav-
eling salesman problem sent invalidations to all other
processors that cache the page containing the current
shortest tour. However, since this variable is accessed only

February 1996

within the critical section protected by the correspond-
ing lock, it suffices to send an invalidation only to the next
processor acquiring the lock and only at the time of lock
acquisition.

Another problem involved false sharing, which occurs
when two or more unrelated data objects are located in
the same page and are written concurrently by separate
processors. Since virtual memory pages are
large, false sharing can be common. The
Jacobi program in Figure 3 suffers from
false sharing if the grid array is laid out so
that portions allocated to different proces-
sors lie within the same page. As both
processors update their portion of the grid
array, they write concurrently to the same
page. Assume that initially processor P,
holds the sole writable copy. When proces-
sor P, writes to the page, it sends an inval-
idate message to processor P;. P, sends the
page to P, and invalidates its own copy.
When P, next writes to the page, the same
sequence occurs with P; and P, interchanged. As each
process writes to the page while it is held by the other
process, the page travels across the network. This repeated
back-and-forth transmission is often called the “ping-pong
effect.”

To address these problems, we experimented with the
following relaxed consistency models and protocols.

LAZY RELEASE CONSISTENCY

Release consistency model

The intuition underlying release consistency is as fol-
lows. Parallel programs should not have data races
because they may lead to wrong results. Thus, sufficient
synchronization must be present to prevent data races.
More specifically, synchronization must be present
between two conflicting accesses to shared memory. This
synchronization eliminates the need to make any shared
memory update from one process visible to another
process before they synchronize with each other, because
the second process will not access the data until the syn-
chronization operation has been executed.

To illustrate this principle, we will use the Jacobi and
TSP examples (Figures 3 and 4). In Jacobi, writes to shared
memory occur after barrier 1 is passed, when the newly
computed values are copied from the scratch array to the
grid array. This phase of the computation terminates when
barrier 2 is passed. Barrier 2 prevents processes from start-
ing the next iteration before all new values are written to
the grid array, and it is essential for correctness (to avoid
dataraces) regardless of the memory model. However, its
presence lets us delay notifying a process about another
process’s updates until the barrier is lowered.

In TSP, the tour queue is the primary shared data struc-
ture. Processors fetch tasks from the queue and work on
them, creating new tasks and inserting them in the queue.
Updates to the task queue structure require a series of
shared memory writes regarding task size and so on.
Atomic access to the task queue data structure is neces-
sary for correct program execution. Only one processor is
permitted access to the task queue at a time. This is guar-

Computer

anteed by a lock acquire and release around these opera-
tions. To access the tour queue, a process must acquire the
lock. Tt therefore suffices to inform the next process acquir-
ingthe lock of the changes to the tour queue, which can be
done when the lock is acquired.

These two examples illustrate release consistency’s
underlying principle. Synchronization is introduced in a
shared memory parallel program to pre-
vent processes from accessing certain
memory locations before the synchro-
nization operation completes. From that
it follows that a process does not need to
be informed of modifications until the
synchronization operation completes, If
the program is free of data races, it will
appear as if it is executing on a sequen-
tially consistent memory, the intuitive
memory model that programmers expect.
The above is true on one condition: All
synchronization must use TreadMarks-
supplied - primitives. Otherwise,
TreadMarks cannot tell when to make shared memory
consistent. :

Release consistency implementations

The release consistency definition specifies the latest
time a shared memory update can become visible to a par-
ticular processor. This allows considerable latitude in
when and how shared memory updates are propagated.
TreadMarks uses the lazy release consistency algorithm.3
Roughly speaking, this enforces consistency at acquire
time, in contrast to Munin’s® earlier version of release con-
sistency, sometimes called “eager release consistency,”
which enforces consistency at release time.

Figure 6 illustrates the principal advantage of lazy
release consistency. Assume x is replicated at all proces-
sors. With eager release consistency, a message must be
sent to all processors informing them of the change to x.
However, only the next processor that acquires the lock
can access x. With lazy release consistency, only that
processor is informed of the change to x; thus reducing
message traffic. Lazy release consistency also-allows pig-
gybacking the notification onto the lock grant message
from the releasing to the acquiring process.

Communicating that a page has changed anid commu-
nicating the changed values within the page are distinct
operations in TreadMarks. To perform the latter,
TreadMarks uses an invalidate protocol. A modified page
is invalidated after an acquire. A later access causes an
access miss, which in turn causes installation of an up-to-
date copy of the page. An alternative method would be an
update protocol in which the acquire message contains
the new values. (See Keleher? for details on TreadMarks
protocols.)

MULTIPLE-WRITER PROTOCOLS

Most hardware cache and DSM systems use single-
writer protocols. These protocols let multiple readers
access a page simultaneously, but a writer must have sole
access before performing modifications. Single-writer
protocols are easy to implement because all copiesof a
page are always identical, and page faults can be satis-

fied by retrieving a page from any processor that has a
valid copy.

Unfortunately, this simplicity often comes at the
expense of message traffic, Before a page can be written,
all other copies must be invalidated. These invalidations
can cause access misses if processors are still accessing the
page. Also, false sharing can degrade performance even
more because of interference between unrelated accesses.
DSM systems typically suffer much more from false shar-
ing than hardware systems because they track data
accesses at the granularity of virtual memory pages
instead of cache lines.

As the name implies, multiple-writer protocols allow
multiple processes to have, at the same time, a writable
copy of a page. Assume that processes P, and P, concur-
rently write to different locations within the same page
and that both initially have an identical valid copy.
TreadMarks uses the virtual memory hardware to detect
modifications (see Figure 7). The shared page is initially
write-protected. When P, writes to the page, TreadMarks
creates a copy, or a twin, and saves it as part of the
TreadMarks data structures on P;. It then unprotects the
page in the user’s address space so that further writes can
occur without software intervention. When P, arrives at
the barrier, we now have the modified copy and the
unmodified twin. A word-by-word comparison creates a
diff, a run-length encoding of the page modifications.
Once the diff has been created, the twin is discarded. The
same sequence of events occurs on P,

Since these events are local to each processor, they do
not require the message exchanges of a single-writer pro-
tocol. When P, and P, synchronize (through a barrier, for
instance), P, is informed that P, has modified the page,
and vice versa, and both invalidate their copies. When they
later access the page, both take an access fault. The
TreadMarks software on P, knows that P, has modified the
page, sends a message to P, requesting the diff, and applies
that diff to the page. The same sequence of events hap-
pens on P,. Thus, except for initial accesses, pages are
updated exclusively by applying diffs, and complete new
copies are never needed.

The primary benefit of diffs is that they can be used to
implement multiple-writer protocols, thereby reducing
the effects of false sharing. In addition, diffs significantly
reduce overall bandwidth requirements because they are
typically much smaller than a page.

One might wonder what happens when two processes
modify overlapping portions of a page. This corresponds
to a data race; two processes are writing to the same loca-
tion without intervening synchronization. Therefore, itis
almost certainly a program error. Even on a sequentially
consistent memory, the outcome would be timing-depen-
dent. The same is true in TreadMarks. We could modify
TreadMarks to check for such occurrences but have not
yet done so.

TREADMARKS SYSTEM

TreadMarks is implemented entirely as a user-level
library on top of Unix. Kernel modifications are unneces-
sary because modern Unix implementations provide all
required communication and memory management func-
tions. Programs written in C, C+ +, or Fortran are com-

p. acall) wx) rel(l)
1

N
P, acq(l) wix) rel(l) e

N A,
P, acq(l) r(x) >

acq(l) wix) rel(l)

\/

P, >
1/x

P, acq(l) wx) rel(l) »

1/x v

P, acq(l) rx) >

Figure 6. Eager release consistency (top) versus lazy
release consistency (bottom). The figure depicts the
execution of three processes, P, P,, and P,, with the
time axis going from left to right. The processes
acquire and release the lock / and read and write
the variable x.

Figure 7. Diff creation.

piled and linked with the TreadMarks library using any
standard compiler for that language. As a result, the sys-
tem is relatively portable.

Operation

TreadMarks implements intermachine communication
using UDP/IP through the Berkeley sockets interface.
Since UDP/IP does not guarantee reliable delivery,
TreadMarks uses lightweight, operation-specific, user-
level protocols to ensure message arrival. Every message
sent by TreadMarks is a request or a response. Request

February 1996

messages are sent as a result of an explicit call to a
TreadMarks library routine or a page fault. Once a
machine has sent a request message, it blocks until a
request message or the expected response message arrives.
If no response arrives within a certain time, the original
request is retransmitted. To minimize delay in handling
incoming requests, TreadMarks uses a SIGIO signal han-
dler. Message arrival at any socket used to receive request
messages generates a SIGIO signal. After receiving a
request message, the handler performs the specified oper-
ation, sends the response message, and returns to the
interrupted process.

Computer

To implement the consistency protocol, TreadMarks
uses the mprotect system call to control access to shared
pages. Any attempt to gain restricted access to a shared
page generates a SIGSEGV signal. The SIGSEGV signal
handler examines local data structures to determine page
state and examines the exception stack to determine
whether the reference is a read or a write. If the local
page is invalid, the handler obtains the necessary diffs
from the minimal set of remote machines. If the refer-
ence is a read, the page protection is set to read-only. For
a write, the handler creates a twin from the pool of free
pages. It takes the same action in response to a fault

caused by a write to a page in read-only mode. Finally,
the handler upgrades access rights to the original page
and returns.

Costs)

Our experimental environment consists of eight
DECstation-5000/240s, with a 4-kilobyte page size, run-
ning Ultrix V4.3. Each machine has a Fore ATM TCA-100
interface connected to a Fore ATM ASX-100 switch. The
connection between the interface boards and the switch
operates at 100 Mbps; the switch has an aggregate
throughputof 1.2 Gbps. Unless otherwise noted, the pet-

formance numbers describe eight-processor executions
onthe ATM LAN using the low-level adaptation layer pro-
tocol AAL3/4.

The minimum roundtrip time using send and receive for
the smallest possible message is 500 microseconds. Using
a signal handler to receive the message at one processor
increases the roundtrip time to 670 microseconds.

The minimum time to remotely acquire a free lock is 827
microseconds. The minimum time to perform an eight-
processor barrier is 2,186 microseconds. A remote access
miss, to-obtain a full page from another processor, takes
2,792 microseconds.

February 1996

* 38,672 ©29,857

469,955 A 2,548
%* 22,285 011,405

Figure 8. Speedup results for MIPLIB problems. Each
line represents a different data set. The numbers in
the legend indicate the sequential execution in sec-
onds for the corresponding data set. Only data sets
with sequential running times over 2,000 seconds
are presented.

% 901
4,682

® 4,085
A9,570

Figure 9. Speedup results for ILink. Each line repre-
sents a different data set. The numbers in the
legend indicate the sequential execution time in
seconds for the corresponding data set.

The time to make a twin is 167 microseconds. The time
to make a diff is somewhat data-dependent. If the page is
unchanged, it takes 430 microseconds. If the entire page
is changed, it takes 472 microseconds. For the worst case,
when every other word in the page is changed, making a
diff takes 686 microseconds.

APPLICATIONS

We have implemented a number of applications in
TreadMarks and reported some benchmark results ear-
lier.® Here, we describe our experience with two large,
recently implemented applications, mixed integer pro-
gramming and genetic linkage analysis. These applica-
tions were parallelized, starting from an existing, efficient
sequential code. Modification to arrive at an efficient par-
allel code proved to be relatively minor.

Computer

Mixed integer programming

Mixed integer programming (MIP) is a version of linear
programming (LP). In LP, an objective function is opti-
mized in a region described by a set of linear inequalities.
In MIP, some or all of the variables are constrained to take
on only integer values (sometimes just the values O or 1).
The precise mathematical formulation is

Minimize ¢ x + dTy,
subjecttoAx + By <b,
wherexe Zr andy € R? (sometimes x € {0,1}7)

The TreadMarks MIP code takes a branch-and-cut
approach. The MIP problem is first relaxed to the corre-
sponding LP problem. The LP solution generally produces
noninteger values for some variables constrained to be inte-
gers. The next step is to pick one of these variables and
branch off two new MIP problems, one with the added con-
straint thatx, < [x]and another thatx, =[x,]. Over time, the
algorithm generates a tree of such branches. As soon as the
algorithim finds an LP solution that satisfies the integer con-
straints, this solution establishes a bound on the objective
funetion’s final value, and nodes for which the LP result is
inferior are not explored further. To expedite this process,
the algorithm uses a technique called plunging, essentially
a depth-first search down the tree to find an integer solu-
tion and establish a bound as quickly as possible. One final
algorithmic improvement uses cutting planes as additional |
constraints to tighten the problem description. Separate
locks protect the two shared data structures: the current
best solution and the MIP problem queue.

‘We used the code to solve all 51 of the MIPLIB library’s
problesms, which include representative examples from air-
line crew scheduling, network flow, plant location, and fleet
scheduling. Figure 8 shows the speedups obtained for prob-
lems with sequential running times over 2,000 seconds. For
most problems, the speedup is near-linear. One problem
exhibits super-linear speedup, because the parallel code
happens to hit on a solution early in its execution, thereby:
pruning most of the branch-and-bound tree. For another
problein, there is very little speedup, because the solution
is found shortly after the preprocessing step, which is not
yet parallelized. The code was also used to solve a previ-
ously unsolved multicommodity flow problem: The prob-
lem took roughly 28 CPU days on an eight-processor IBM
SP-1 and also exhibited near-linear speedup.

Genetic linkage analysis

Genetic linkage analysis is a statistical technique that
uses family pedigree information to map genes and locate
disease genes in the human genome. Recent advances in -
biology and genetics have made an enormous amount of
genetic material available, making computation the bot-
tleneck in further discovery of disease genes. :

In the classical Mendelian theory of inheritance, the
child’s chromosomes receive one strand of each parent’s
chromosomes. In reality, inheritance is more complicated
due to recombination, in which the child’s chromosome
receives a piece of both strands: The goal of linkage analysis
isto derive the probabilities that recombination has occurred
between the gene we are looking for and genes with known
locations. From these probabilities, we can compute the

gene’s approximate location on the chromosome.

We parallelized ILink, a widely used genetic linkage
analysis program that is part of the Fastlink package.® ILink
takes as input a family tree, called a pedigree, augmented
with some genetic information about family members. It
computes a maximum-likelihood estimate of 8, the recom-
bination probability. At the top level, ILink consists of a
loop that optimizes 6. In each iteration of the optimiza-
tion loop, the program traverses the entire pedigree, one
nuclear family at a time, computing the likelihood of the
current 6 given the known genetic information of family
members. For each nuclear family member, the algorithm
updates a large array of conditional probabilities. Each
represents the probability that the individual has certain
genetic characteristics, conditioned on 6 and on the part
of the family tree already traversed.

The algorithm is parallelized by splitting the iteration
space per nuclear family to balance the load among the
available processors. Load balancing is essential and relies
on knowledge of the genetic information represented in
the array elements. An alternative approach, splitting the
tree traversal, failed to produce good speedups because
most of the computation occurs in a small part of the tree
(typically, the nodes closest to the root, representing
deceased individuals about whom little genetic informa-
tion is known).

Figure 9 presents speedups for various data sets from
actual disease gene location studies. For the data sets with
along running time, good speedups are achieved. For the
smallest data sets, speedup is lower because of the greater
communication-to-computation ratio. Speedup is highly

' DEC RISC / ULTRIX
 HP 9000/300, 400, 700

dependent on the communication-to-computation ratio,
in particular on the number of messages per second. For
the data set with the smallest speedup, ILink exchanged
approximately 1,800 messages per second, while for the
data set with the best speedup, the number of messages
per second went down to approximately 300.

We found that overhead—that is, time spent not exe-
cuting application code—is dominated by idle time and
Unix overhead. Idle time results from load imbalance and
from waiting for messages to arrive over the network. Unix
overhead is time spent in executing Unix library code and
system calls. Much of the Unix overhead is related to net-
work communication. Only a small portion of the over-
head is spent executing code in the TreadMarks library.
The largest single overhead stems from network commu-
nication or related events, which validates our focus on
reducing messages and data exchange. Space overhead
consists of memory used for twins, diffs, and other
TreadMarks data structures. The current system statically
allocates 4 megabytes of memory for diffs and 0.5
megabyte for other data structures. A garbage collection
procedure is invoked if these limits are exceeded. Space
for twins is dynamically allocated. For a representative
example of a large ILink run, namely, the data set with a
sequential running time of 4,085 seconds, the maximum
memory usage for twins at any point in the execution was
approximately 1 megabyte per processor.

OUR EXPERIENCE DEMONSTRATES THAT with suitable imple-
mentation techniques, distributed shared memory can
provide an efficient platform for parallel computing on

——ln McCabe
s ww (=2 Associat 5@

Reader Service Number S

networked workstations. We ported large applications to
the TreadMarks DSM system with little difficulty and good
performance. We intend to experiment with additional
applications, including a seismic modeling code. We are
also developing various tools to further ease the pro-
gramming burden and improve performance. In particu-
lar, we are investigating compiler support for prefetching
and performance monitoring tools to eliminate unneces-
sary synchronization. i

Acknowledgments

This research was supported in part by the National
Science Foundation under Grants CCR-9116343, CCR-
9211004, CDA-9222911, BIR-9408503, and CDA-
9502791, and by the Texas Advanced Technology Program
and Tech-Sym Inc. under Grant 003604012.

References
1. K. Liand P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems,” ACM Trans. Computer Systems, Vol. 7, No.

4, Nov. 1989, pp. 321-359. _

2. L. Lamport, “How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs,” IEEE Trans. Com-
puters, Vol. C-28, No. 9, Sept. 1979, pp. 690-691.

3. P.Keleher, “Distributed Shared Memory Using Lazy Release
Consistency,” PhD dissertation, Rice University, Tech. Report
Rice' Comp-TR-240, ftp cs.rice.edu under public/Tread-
Marks/papers, 1994.

4. M. Stumm and S. Zhou, “Algorithms Implementing Distrib-
uted Shared Memory,” Computer, Vol. 24, No. 5, May 1990,
pp. 54-64.

5. J.B. Carter, J.K. Bennett, and W. Zwaenepoel, “Techniques
for Reducing Consistency-Related Information in Distributed
Shared Memory Systems,” ACM Trans. Computer Systems, Vol.
13, No. 3, Aug. 1995, pp. 205-243.

6. S.K. Gupta et al., “Integrating Parallelization Strategies for
Linkage Analysis,” Computers and Biomedical Research, Vol.
28, June 1995, pp. 116-139.

Cristiana Amza is a PhD student in the Department of
Computer Science at Rice University. Her interests are in all
aspects of distributed systems and parallel computing, in par-
ticular, distributed shared memory and the use of new
advances in network technology to improve distributed
shared memory performance. She received the BS degree in
computer science from Bucharest Polytechnic Institute,
Bucharest, Romania, in 1991.

Alan L. Cox is an assistant professor in the Department of
Computer Science at Rice University. His research interests
include cache coherence protocols and data placement for
shared memory multiprocessors and distributed shared
memory for workstation networks. He was named an NSF
Young Investigator in 1994. He received the BS degree in
applied mathematics from Carnegie Mellon University in
1986 and MS and PhD degrees in computer science from the
University of Rochester in 1988 and 1992.

Sandhya Dwarkadas is aresearch scientist in the Depart-
ment of Computer Science at Rice University. Her research
interests include parallel and distributed systems, parallel
computer architecture, parallel computation, simulation

Cémputer

methodology, and performance evaluation. She received the
BTech. degree in electrical and electronics engineering from
the Indian Institute of Technology, Madras, India, in 1986,
and the MS and PhD degrees in electrical and computer engi-
neering from Rice University in 1989 and 1993.

Pete Keleher is an assistant professor in the Department
of Computer Science at the University of Maryland, College
Park. His research interests include abstractions of coher-
ence, distributed shared memory, operatingsystems, and
parallel computer architecture. He received the BS degree in
electrical engineering, and the M[S and PhD degrees in com-
puter science from Rice University in'1986, 1993, and 1995.

Honghui Luis a PhD studentin the Electrical and Comptiter
Engineering Department at Rice University. Her research inter-
ests include parallel and distributed systems, parallel compu-
tation, and performance evaluation. She received the BS
degree in computer science and engineering from Tsinghua
University, China, in 1992, and the MS degree inelectrical and
computer engineering from Rice University in 1995.

Ramakrishnan Rajamony, a PhD student in the
Department of Electrical and Computer Engineering at Rice
University, is currently working on performance debugging
of shared memory parallel programs; providing prescriptive
feedback to the user. He has also worked on software dis-
tributed shared memory systems and compiler schemes for
software cache coherence. He received the BTech degree in
electrical engineering from the Indian Institute of Technol-
ogy, Madras, in 1989, and the MS degree in computer engi-
neering from North Carolina State University in 1991.

Weimin Yiiis a PhD studentin the Department of Computer
Science at Rice University, working under the direction of Pro-
fessor Alan Cosx. His research interests include distributed oper-
ating systems and distributed programming environments.
Hereceived the BE degree in computer science and engineering
from Tsinghua University, Ching, in 1991, and the MiS degree
in computer science from Rice University in 1994.

Willy Zwaenepoel is a professor in the Department of
Computer Science at Rice University. His research interests
are in distributed operating systems, fault tolerance, paral-
lel computation, and nonvolatile memory. He received the
BSinelectrical engineering from the University of Gent, Bel-
gium, in 1979, the MS degree in computer science from Stan-
ford University in 1980, and the PhD degree in electrical
engineering from Stanford University in 1984~

Readers can contact the authors at the Department of Com-
puter Science, Rice University, Houston, TX 77005-1892; e-
mail {amza, alc, sandhya}@cs.rice.edu, keleher@cs.umd.
edu, {hhLrrk,weimin, willy}@cs.rice.edu; http.‘/‘/www.
cs.rice.edu/~willy/TreadMarks/overview.html, For infor-
mation on obtaining the TreadMarks system, please send e-
mail to treadmarks @ece.rice.edu.

Louise Moser, computer networks area manager for Com-
puter, coordinated the review. of this article and recom-
mended it.for publication. Her e-mail address is moser@ece.
ucsb.edu.

