
1

CSE 451: Operating Systems
Spring 2005

Module 22
Security

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 2

Outline

• “Classic” security topics
– goal: safe sharing
– general principles
– Trusted Computing Base (TCB)

• Contemporary security problems
– worms
– spyware

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 3

Safe sharing

• Protecting a non-networked PC with one user is easy
– Nobody can access the data on your computer
– Nobody can install new code
– Nobody can attack you over the network

• Sharing resources safely is hard
– Prevent some users from reading private data

• yet allow authorized users to access it
• e.g., grades, keystrokes

– Prevent some users from using too many resources
• e.g., disk space

– Prevent users from interfering with others’ programs
• spoofing displays, replacing programs with malicious code,

killing off processes …

Much of security is art, not science
• Difficult to “prove” a system secure
• Security is based on principles and best practices

– experience reveals commonly occurring types of flaws
– but clearly we need to do better…

0

20000

40000

60000

80000

100000

120000

140000

160000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

C

E
R

T
re

po
rt

ed
 s

ec
ur

ity
 in

ci
de

nt
s

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 5

Principle of Least Privilege

• Figure out exactly which capabilities a program
needs to run, and grant it only those
– start out by granting none

• run program, and see where it breaks
• add new privileges as needed.

• Unix: concept of root is not a good example of this
– some programs need root just to get a small privilege

• e.g., FTP daemon requires root:
– to listen on network port < 1024
– to change between user identities after authentication

• but root also lets you read any file in filesystem

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 6

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has
changed…and there is a lot that’s relevant!

• A TLB caches access control information
– page table entry protection bits
– is this a violation of the principle?

2

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 7

“Security through Obscurity”= bad

• Security through obscurity
– “gain security” by hiding system implementation details
– should be secure even if implementation is open!

• in fact, publishing makes it more secure, since people can
scour implementation and find/fix flaws

– rely on mathematics and sound design to keep secure

• Counterexample: GSM cell phones
– GSM committee designed own crypto algorithm, but hid it

• “impossible to clone”

– social + reverse engineering revealed the algorithm
• it turned out to be very weak
• could play “20 questions ” with identity chip and learn its secret

key in a few hours

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 8

Trusted Computing Base (TCB)

• Think carefully about what you are trusting with your information
– if you type your password on a keyboard, you’re trusting:

• the keyboard manufacturer
• your computer manufacturer
• your operating system

– including the keyboard device driver

• the password library
• the application that ’s checking the password

– what about the compiler that compiled all of this software (!!)

• TCB = set of components (hardware, software, wetware) that
you must trust to preserve your secrets
– should be as small as possible

• public web kiosks should *not* be in your TCB
• how about your web browser?

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 9

Cryptography

• Mathematics to secure data in a digital lockbox
– ciphertext = f(key1, plaintext)
– plaintext = g(key2, ciphertext)
– hard to convert between ciphertext /plaintext without keys

• Preserve secrecy, integrity, authenticity of data
– encrypt messages before sending them over Internet
– encrypt files before storing on hard drive
– makes it difficult for intermediaries to:

• learn plaintext by sniffing messages
• change plaintext undetectably
• spoof fake messages

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 10

Modern security problems

• Internet experiencing a plague of attacks
– remote exploits: attackers breaking into your system
– worms: self-replicating attack code
– spyware: software that tries to steal information from you
– phishing attacks: web sites spoofing other web sites

• Underlying issues
– most of our code is buggy
– the Internet was designed to be “open”

• easy to build new services, but easy to find/attack victims
– understanding security is hard

• haven’t found simple conceptual models or usable UIs
• e.g., what does the lock icon in IE really mean?

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 11

Worms 101

• Pseudocode for a simple worm

for (i = 0.0.0.0; i < 255.255.255.255; i++) {
open network connection to “i”;
if succeed {

try to exploit vulnerability x on “i”;
if succeed {

send code for self to victim and run it;
}
close connection to “i”;

}
}

• Will this worm propagate?
– how quickly?

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 12

A “better” worm

while (1) {
open network connection to random IP address “i”;
if succeed {

try to exploit vulnerability x on “i”;
if succeed {

send code for self to victim and run it;
}
close connection to “i”;

}
}

• Why is this “better”?
• How quickly will this propagate?
• How can you do even better?

3

Random scanning worms

• Simple “random constant spread” growth model
– population size = N =~ 2^32

• # susceptible hosts = S(t)
• # infected hosts = I(t); I(t) + S(t) = S(0)
• scan rate of infected host = B scans/second

– simple differential equation solving leads to:
• dI(t) / dt = I(t) x B x [S(t) / N]

Q u i c k T i m e ™ a n d a
T I F F (L Z W) d e c o m p r e s s o r

a r e n e e d e d t o s e e t h i s p i c t u r e .

• Exponential growth!
– until population saturates
– Code Red worms followed

this quite closely

S(t) / S(0)

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 14

Local scanning worms

• A major poblem with random scan…
– IP address space is non-uniformly populated
– large swaths of empty IP space, but some dense regions

• Idea: scan nearby IP addresses preferentially
– victim 128.95.4.1

• with probability 37.5%, scan 128.95.X.Y
• with probability 50%, scan 128.X.Y.Z
• with probability 12.5%, scan X.Y.Z.W

• Code Red v2 used this technique
– doubled in size every 37 minutes
– took ~12 hours to saturate susceptible population

• 1/2 million IIS web servers affected

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 15

Multi-vector worms

• Probe for many vulnerabilities, not just one
– increases size of susceptible population

• Nimda worm used this approach
– probed multiple IIS vulnerabilities

• and left attack code in HTML on compromised IIS servers

– bulk emailed itself
– looked for backdoor left by Code Red v2 worm (!!)

• No good data on Nimda propagation speed
– less than an hour to reach saturation

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 16

Faster scan rate

• Increased scan rate ==> faster spread
– Code Red: approximately 5 scans per second
– Sapphire worm: approximately 4000 scans per second

• Sapphire
– attacked SQL server vulnerability
– fit the probe + propagation in a single 376 byte UDP packet

• very quick to send, no connection establishment timeouts

• Spread data
– worm doubled in size every 8.5 seconds
– saturated susceptible population of ~75,000 hosts in about

5-10 minutes (!!)

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 17

Sapphire fallout

• It propagated too fast for its own good!
– no per-host damage
– but massively clogged Internet backbones with scans
– self-interference slowed its propagation rate

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 18

Theoretically possible worms

• Hit list scanning worm
– gather large list of susceptible machines in advance
– initial victim scans this hit list, then does random scan
– upon propagation, partition hitlist across new victims

• Very quick spread through hitlist
– avoids initial rampup in exponential curve

t

victims
hitlist
worm

random
scan worm

hit list

4

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 19

Theoretically possible (2)

• Permutation scanning worm
– rather than true random scan, all worms pick same random

ordering of IP address space
• worm picks a random starting point in ordering

– if scan reveals target is already a worm, jump to new starting
point

– avoids duplicating work, speeds up the “end game”

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 20

What ’s the worst-case scenario?

• Flash worm
– build a hitlist with all possible susceptible victims

• possible to do with slow scanning in advance

• How fast would it spread?

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 21

What ’s the worst-case scenario?

• Flash worm
– build a hitlist with all possible susceptible victims

• possible to do with slow scanning in advance

• How fast would it spread?
– hard to predict precisely

• estimate: saturate millions of susceptible hosts in 1-5 seconds

– how do you defend against this??

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 22

Coping with worms

• Two basic approaches
– prevention

• avoid vulnerabilities that lead to worms

– detection & filtering
• notice a new worm is spreading

• devise a filter that blocks it
• install the filter in enough places around world to block it

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 23

Prevention

• Prevention techniques
– turn off servers on home machines
– use firewalls and NAT proxies on home machines
– write less buggy code

• “Sneaky worm”
– you don’t need to run a server to be affected

• compromised web server attacks web clients
• compromised web client attacks web servers

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 24

Detecting worms

• How do you detect new worms?
– approach 1: listen for increasing probe rate

• worms knock on your door as they spread
– an average of one probe every 5- 7 minutes now

• if probe rate grows anomalously high, must be a new worm

– approach 2: look for probes with repeated content
• derive “signature” based on repeated strings
• called “content sifting”
• much faster and more accurate

5

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 25

Filtering worms

• How widely must you filter?
– turns out must cover most of the Internet “junctions”
– Internet is well-connected by design

• worm wriggles through nooks and crannies

• Major problem!
– pushing filters out faster than worm spreads requires

something that looks a lot like a worm!

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 26

Spyware

• Software that is installed that collects information and
reports it to third party
– key logger, adware, browser hijacker, …

• Installed one of two ways
– piggybacked on software you choose to download
– “drive-by” download

• your web browser has vulnerabilities
• web server can exploit by sending you bad web content

• Estimates
– majority (50-90%) of Internet-connected PCs have it
– 1 in 8 executables on the Web have it
– 2% of Web pages attack you with drive-by-download

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 27

Wrap-up

• Security is hard
– fundamentally an adversarial, escalating game
– we’re getting better, but so are the “bad guys”

• Complex systems are insecure
– OS software one of the most complex artifacts of humankind
– no surprise it has flaws!

• Current trends
– reduce TCB to exclude OS
– develop stronger sandboxes to contain flaws

• virtual machine software (e.g., Vmware)

– program with safer languages than C

6/1/2005 © 2005 Gribble, Lazowska, Levy, Swift 28

Principle of Fail-Safe Defaults

• Policy should list what is allowed, not what is denied
– security configuration should deny all access by default
– allow only that which has been explicitly permitted
– oversights show up as “false negatives”

• users will quickly complain

• Opposite approach leads to “false positives ”
– the bad guys usually don’t report this kind of failure…

• Counterexample: Irix OS
– shipped with “ xhost +” by default

• Allows the world to open windows on your screen and grab the
keystrokes you type

