CSE 451: Operating Systems Winter 2005

Course Introduction

Steve Gribble

Today's agenda

- · Administrivia
 - course overview
 - · course staff
 - general structure · your to-do list
- · OS overview
- - functional
 - · resource mgmt, major issues
 - historical
 - · batch systems, multiprogramming, time shared OS's
 - · PCs, networked computers

© 2005 Steve Gribble 12/28/04

Course overview

 Everything you need to know will be on the course web page:

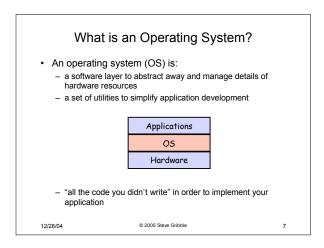
http://www.cs.washington.edu/education/courses/451/CurrentQtr

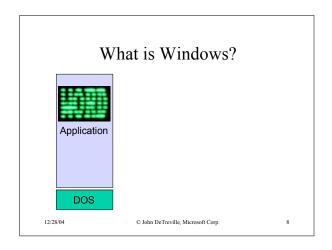
12/28/04 © 2005 Steve Gribble

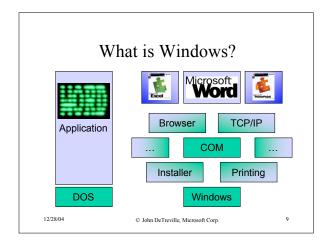
3

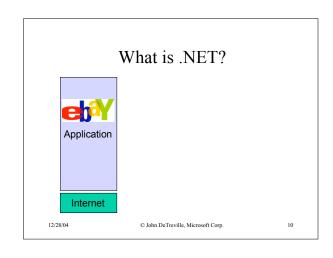
- But to tide you over for the next hour \dots
 - course staff
 - Steve Gribble
 - · Alex Moshchuk
 - · Saurav Chatterjee
 - general structure
 - · read the text prior to class class will supplement rather than regurgitate the text
 - · sections will focus on the project
 - · we really want to encourage discussion, both in class and in

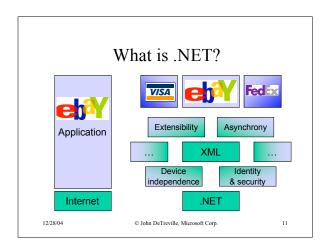
12/28/04 © 2005 Steve Gribble

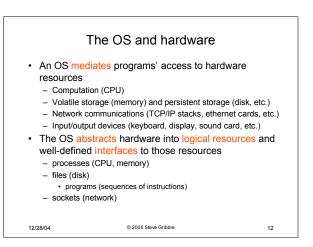

- your to-do list ...
 - please read the entire course web thoroughly, today
 - please get yourself on the cse451 email list, today, and check your email daily
 - homework 1 (reading + problems) is posted on the web now; due Friday
 - project 1 will be posted on the web Wednesday and will be discussed in section on Thursday; due a week from Friday


© 2005 Steve Gribble 12/28/04


Registration Stuff


- · If you're going to drop this course
 - please do it soon!
- · If you want to get into this course
 - make sure you've filed a petition with the advisors


© 2005 Steve Gribble 12/28/04



Why bother with an OS?

- · Application benefits
 - programming simplicity
 - see high-level abstractions (files) instead of low-level hardware details (device registers)
 abstractions are reusable across many programs
 - portability (across machine configurations or architectures)
 - · device independence: 3Com card or Intel card?
- · User benefits
 - - · program "sees" own virtual machine, thinks it owns computer

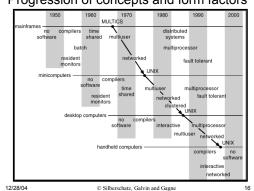
13

- OS protects programs from each other
- · OS fairly multiplexes resources across programs
- efficiency (cost and speed)
 - share one computer across many users
 - · concurrent execution of multiple programs

© 2005 Steve Gribble 12/28/04

The major OS issues

- structure: how is the OS organized?
- sharing: how are resources shared across users?
- naming: how are resources named (by users or programs)?
- security: how is the integrity of the OS and its resources ensured?
 - protection: how is one user/program protected from another?
- performance: how do we make it all go fast?
- reliability: what happens if something goes wrong (either with hardware or with a program)?
- extensibility: can we add new features?
- communication: how do programs exchange information, including across a network?


© 2005 Steve Gribble 12/28/04

More OS issues...

- concurrency: how are parallel activities (computation and I/O) created and controlled?
- scale: what happens as demands or resources increase?
- persistence: how do you make data last longer than program executions?
- distribution: how do multiple computers interact with each
- accounting: how do we keep track of resource usage, and perhaps charge for it?

12/28/04 © 2005 Steve Gribble 15

Progression of concepts and form factors

Multiple trends at work

- "Ontogeny recapitulates phylogeny"
 - Ernst Haeckel (1834-1919)
 - · ("always quotable, even when wrong")
- · "Those who cannot remember the past are condemned to repeat it"
 - George Santayana (1863-1952)
- · But new problems arise, and old problems re-define themselves
 - The evolution of PCs recapitulated the evolution of minicomputers, which had recapitulated the evolution of mainframes
 - But the ubiquity of PCs re-defined the issues in protection and security

12/28/04 © 2005 Steve Gribble 17

Protection and security as an example

- OS from my program
- your program from my program
- my program from my program
- access by intruding individuals
- access by intruding programs
- denial of service
- distributed denial of service
- spoofing
- spam worms
- stuff you download and run knowingly (bugs, trojan horses)
- stuff you download and run unknowingly (cookies, spyware)

© 2005 Steve Gribble 12/28/04

OS history

- · In the very beginning...
 - OS was just a library of code that you linked into your program; programs were loaded in their entirety into memory, and executed
 - interfaces were literally switches and blinking lights
- · And then came batch systems
 - OS was stored in a portion of primary memory
 - OS loaded the next job into memory from the card reader

19

- · job gets executed
- output is printed, including a dump of memory (why?)
- · repeat..
- card readers and line printers were very slow
 - so CPU was idle much of the time (wastes \$\$)

© 2005 Steve Gribble 12/28/04

Spooling

- · Disks were much faster than card readers and
- Spool (Simultaneous Peripheral Operations On-Line)
 - while one job is executing, spool next job from card reader onto disk
 - slow card reader I/O is overlapped with CPU
 - can even spool multiple programs onto disk
 - · OS must choose which to run next
 - but, CPU still idle when a program interacts with a peripheral during execution
 - buffering, double-buffering

© 2005 Steve Gribble 12/28/04

Multiprogramming

- To increase system utilization, multiprogramming OSs were invented
 - keeps multiple runnable jobs loaded in memory at once
 - overlaps I/O of a job with computing of another
 - while one job waits for I/O completion, OS runs instructions from another job
 - to benefit, need asynchronous I/O devices
 - · need some way to know when devices are done
 - interrupts
 - pollina
 - goal: optimize system throughput
 - · perhaps at the cost of response time...

12/28/04 © 2005 Steve Gribble 21

Timesharing

- To support interactive use, create a timesharing OS:
 - multiple terminals into one machine
 - each user has illusion of entire machine to him/herself
 - optimize response time, perhaps at the cost of throughput
- · Timeslicing
 - divide CPU equally among the users
 - if job is truly interactive (e.g. editor), then can jump between programs and users faster than users can generate load
 - permits users to interactively view, edit, debug running programs (why does this matter?)
- · MIT Multics system (mid-1960's) was the first large timeshared system
 - nearly all OS concepts can be traced back to Multics

12/28/04 © 2005 Steve Gribble 22

Distributed OS

- · distributed systems to facilitate use of geographically distributed resources
 - workstations on a LAN
 - servers across the Internet
- · supports communications between jobs
 - interprocess communication
 - · message passing, shared memory
 - networking stacks
- sharing of distributed resources (hardware, software)
 - load balancing, authentication and access control, ...
- · speedup isn't the issue
 - access to diversity of resources is goal

© 2005 Steve Gribble 12/28/04 23

Parallel OS

- · Some applications can be written as multiple parallel threads or processes
 - can speed up the execution by running multiple threads/processes simultaneously on multiple CPUs
 - need OS and language primitives for dividing program into multiple parallel activities
 - need OS primitives for fast communication between activities
 - · degree of speedup dictated by communication/computation ratio
 - many flavors of parallel computers
 - · SMPs (symmetric multi-processors)
 - · MPPs (massively parallel processors)
 - · NOWs (networks of workstations)
 - · computational grid (SETI @home)

12/28/04

24

Embedded OS

- Pervasive computing
 cheap processors embedded everywhere
 how many are on your body now? in your car?
 cell phones, PDAs, games, iPod, network computers, ...
- Typically very constrained hardware resources
 - slow processors
 - small amount of memory
 - no disk
 - typically only one dedicated application
- But technology changes fast
 embedded CPUs are getting faster
 1" disks are changing things, e.g., iPod mini (4GB)

© 2005 Steve Gribble 12/28/04

CSE 451

- In this class we will learn:
 - what are the major components of most OS's?
 - how are the components structured?
 - what are the most important (common?) interfaces?
 - what policies are typically used in an OS?
 - what algorithms are used to implement policies?
- Philosophy
 - you may not ever build an OS
 - but as a computer scientist or computer engineer you need to understand the foundations
 - most importantly, operating systems exemplify the sorts of engineering design tradeoffs that you'll need to make throughout your careers compromises among and within cost, performance, functionality, complexity, schedule ...

© 2005 Steve Gribble 12/28/04