
1

CSE 451: Operating Systems
Winter 2005

Lecture 10
Paging & TLBs

Steve Gribble

1/26/05 © 2005 Steve Gribble 2

Managing Page Tables

• Last lecture:
– size of a page table for 32 bit AS with 4KB pages was 4MB!

• far too much overhead
– how can we reduce this?

• observation: only need to map the portion of the address
space that is actually being used (tiny fraction of address
space)

– only need page table entries for those portions
• how can we do this?

– make the page table structure dynamically extensible…

– all problems in CS can be solved with a level of indirection
• two-level page tables

2

1/26/05 © 2005 Steve Gribble 3

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset + PFN = physical address

• Example:
– 4KB pages, 4 bytes/PTE

• how many bits in offset? need 12 bits for 4KB
– want master PT in one page: 4KB/4 bytes = 1024 PTE

• hence, 1024 secondary page tables
– so: master page number = 10 bits, offset = 12 bits

• with a 32 bit address, that leaves 10 bits for secondary PN

1/26/05 © 2005 Steve Gribble 4

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

3

1/26/05 © 2005 Steve Gribble 5

Addressing Page Tables

• Where are page tables stored?
– and in which address space?

• Possibility #1: physical memory
– easy to address, no translation required
– but, page tables consume memory for lifetime of VAS

• Possibility #2: virtual memory (OS’s VAS)
– cold (unused) page table pages can be paged out to disk
– but, addresses page tables requires translation

• how do we break the recursion?
– don’t page the outer page table (called wiring)

• So, now that we’ve paged the page tables, might as
well page the entire OS address space!
– tricky, need to wire some special code and data (e.g.,

interrupt and exception handlers)

1/26/05 © 2005 Steve Gribble 6

Making it all efficient

• Original page table schemed doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware
• called a translation lookaside buffer (TLB)
• TLB is managed by the memory management unit (MMU)

4

1/26/05 © 2005 Steve Gribble 7

TLBs

• Translation lookaside buffers
– translates virtual page #s into PTEs (not physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical (64-192KB)
• can hold the “hot set” or “working set” of process

– hit rates in the TLB are therefore really important

1/26/05 © 2005 Steve Gribble 8

Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, who places translations into the TLB?

• Hardware (memory management unit, MMU)
– knows where page tables are in memory

• OS maintains them, HW access them directly
– tables have to be in HW-defined format
– this is how x86 works

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format

5

1/26/05 © 2005 Steve Gribble 9

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly
– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g. LRU)

1/26/05 © 2005 Steve Gribble 10

Segmentation

• A similar technique to paging is segmentation
– segmentation partitions memory into logical units

• stack, code, heap, …
– on a segmented machine, a VA is <segment #, offset>
– segments are units of memory, from the user’s perspective

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

• Hardware support:
– multiple base/limit pairs, one per segment

• stored in a segment table
– segments named by segment #, used as index into table

6

1/26/05 © 2005 Steve Gribble 11

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
 protection fault

no

yes

offset

baselimit

segment table

1/26/05 © 2005 Steve Gribble 12

Combining Segmentation and Paging

• Can combine these techniques
– x86 architecture supports both segments and paging

• Use segments to manage logically related units
– stack, file, module, heap, …?
– segment vary in size, but usually large (multiple pages)

• Use pages to partition segments into fixed chunks
– makes segments easier to manageme within PM

• no external fragmentation
• segments are “pageable”- don’t need entire segment in memory at same time

• Linux:
– 1 kernel code segment, 1 kernel data segment
– 1 user code segment, 1 user data segment
– N task state segments (stores registers on context switch)
– 1 “local descriptor table” segment (not really used)
– all of these segments are paged

• three-level page tables

7

1/26/05 © 2005 Steve Gribble 13

Cool Paging Tricks

• Exploit level of indirection between VA and PA
– shared memory

• regions of two separate processes’ address spaces map to the
same physical frames

– read/write: access to share data
– execute: shared libraries!

• will have separate PTEs per process, so can give different
processes different access privileges

• must the shared region map to the same VA in each process?
– copy-on-write (COW), e.g. on fork()

• instead of copying all pages, created shared mappings of
parent pages in child address space

– make shared mappings read-only in child space
– when child does a write, a protection fault occurs, OS takes over

and can then copy the page and resume client

1/26/05 © 2005 Steve Gribble 14

Another great trick

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file
• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

