
1

CSE 451: Operating Systems
Winter 2005

FFS and LFS

Steve Gribble

2/14/05 © 2005 Steve Gribble 2

File System Implementations

• We’ve looked at disks and file systems generically
– now it’s time to bridge the gap by talking about specific file

system implementations

• We’ll focus on two:
– BSD Unix FFS

• what’s at the heart of most UNIX file systems
– LFS

• a research file system originally from Berkeley

2

2/14/05 © 2005 Steve Gribble 3

FFS

2/14/05 © 2005 Steve Gribble 4

BSD UNIX FFS

• FFS = “Fast File System”
– original (i.e. 1970’s) file system was very simple and

straightforwardly implemented
• but had very poor disk bandwidth utilization
• why? far too many disk seeks on average

• BSD UNIX folks did a redesign in the mid ’80’s
– FFS: improved disk utilization, decreased response time
– McKusick, Joy, Fabry, and Leffler
– basic idea is FFS is aware of disk structure

• I.e., place related things on nearby cylinders to reduce seeks

3

2/14/05 © 2005 Steve Gribble 5

Data and Inode placement

• Original (non-FFS) unix FS had two major problems:
– 1. data blocks are allocated randomly in aging file systems

• blocks for the same file allocated sequentially when FS is new
• as FS “ages” and fills, need to allocate blocks freed up when

other files are deleted
– problem: deleted files are essentially randomly placed
– so, blocks for new files become scattered across the disk!

– 2. inodes are allocated far from blocks
• all inodes at beginning of disk, far from data
• traversing file name paths, manipulating files, directories

requires going back and forth from inodes to data blocks

– BOTH of these generate many long seeks!

2/14/05 © 2005 Steve Gribble 6

Cylinder groups

• FFS addressed these problems using notion of a
cylinder group
– disk partitioned into groups of cylinders
– data blocks from a file all placed in same cylinder group
– files in same directory placed in same cylinder group
– inode for file in same cylinder group as file’s data

• Introduces a free space requirement
– to be able to allocate according to cylinder group, the disk

must have free space scattered across all cylinders
– in FFS, 10% of the disk is reserved just for this purpose!

• good insight: keep disk partially free at all times!
• this is why it may be possible for df to report >100%

4

2/14/05 © 2005 Steve Gribble 7

Other FFS innovations

• I lied: original UNIX FS had 1KB blocks, not 4KB
– even more seeking == less bandwidth
– small max file size (function of block size)

• FFS fixes by using a larger block (4KB)
– allows for very large files (4TB)
– but, introduces internal fragmentation

• on average, each file wastes 2KB!
• worse, in practice, average file size is only about 1KB!

– fix: introduce “fragments”
– 1KB pieces of a block

• Old FS was unaware of disk parameters
– FFS: parameterize FS according to disk and CPU characteristics

• e.g.: account for CPU interrupt and processing time to layout
sequential blocks

– skip according to rotational rate and CPU latency!

2/14/05 © 2005 Steve Gribble 8

LFS

5

2/14/05 © 2005 Steve Gribble 9

Log-Structured File System (LFS)

• LFS was designed in response to two trends in
workload and disk technology:
– 1. Disk bandwidth scaling significantly (40% a year)

• but, latency is not
– 2. Large main memories in machines

• therefore, large buffer caches
– absorb large fraction of read requests in caches

• can use for writes as well
– coalesce small writes into large writes

• LFS takes advantage of both to increase FS
performance
– Rosenblum and Ousterhout (Berkeley, ’91)

• note: Rosenblum went on to become Stanford prof, and to co-
found VMware, inc!

2/14/05 © 2005 Steve Gribble 10

LFS: The Basic Idea

• Treat the entire disk as a single log for appending
– collect writes in the disk buffer cache, and write out the

entire collection of writes in one large request
• leverages disk bandwith with large sequential write
• no seeks at all! (assuming head at end of log)

– all info written to disk is appended to log
• data blocks, attributes, inodes, directories, .etc.

• Sounds simple!
– but it’s really complicated under the covers

6

2/14/05 © 2005 Steve Gribble 11

LFS Challenges

• There are two main challenges with LFS:
– 1. locating data written in the log

• FFS places files in a well-known location, LFS writes data “at
the end of the log”

– 2. managing free space on the disk
• disk is finite, and therefore log must be finite
• cannot always append to log!

– need to recover deleted blocks in old part of log
– need to fill holes created by recovered blocks

2/14/05 © 2005 Steve Gribble 12

LFS: locating data

• FFS uses inodes to locate data blocks
– inodes preallocated in each cylinder group
– directories contain locations of inodes

• LFS appends inodes to end of log, just like data
– makes them hard to find

• Solution:
– use another level of indirection: “inode maps”

• inode maps map file #s to inode location
– location of inode map blocks are kept in a “checkpoint region”

• checkpoint region has a fixed location
– cache inode maps in memory for performance

7

2/14/05 © 2005 Steve Gribble 13

LFS vs. FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

inode

directory

data

inode map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

2/14/05 © 2005 Steve Gribble 14

LFS: reads and writes

• Every write causes new blocks to be added to the
current “segment buffer” in memory
– when segment is full, it is written to the disk

• Reads are no different than in FFS
– find the inode (using inode map in LFS), then use inode to

find the file blocks

• Over time, though, segments become “fragmented”
as we replace old blocks of a file with new blocks
– need to get rid of this fragmentation so we have contiguous

free space to write

8

2/14/05 © 2005 Steve Gribble 15

LFS: free space management

• LFS: append-only quickly eats up all disk space
– need to recover deleted blocks

• Solution:
– fragment log into segments

• thread segments on disk
• segments can be anywhere

– reclaim space by “cleaning segments”
• read segment
• copy live data to end of log
• now have free segment you can reuse!

– cleaning is a big problem
• costly overhead, when do you do it?

– “idleness is not sloth”
• which segments do you clean? turns out to be really tricky.

