
1

CSE 451: Operating Systems
Winter 2005

Distributed filesystems

Steve Gribble

3/4/05 © 2005 Steve Gribble 2

Distributed File Systems

• Basic idea:
– support sharing of files and sharing of devices (disks)

network wide.

• To an application or a client, the filesystem looks just
like a centralized, local filesystem
– but under the covers, it has a distributed implementation
– read blocks from remote hosts, instead of local disks

2

3/4/05 © 2005 Steve Gribble 3

Basic Issues

• File naming
– how are files named?
– are those names location transparent (is the file location

visible to the user)?
– are those names location independent?

• do the names change if the file moves?
• do the names change if the user moves?

3/4/05 © 2005 Steve Gribble 4

Basic Issues

• Caching
– caching exists for performance reasons
– where are file blocks cached?

• On the file server?
• On the client machine?

• Coherency
– what happens when a cached block/file is modified
– how does a node know when its cached blocks are out of

date?

3

3/4/05 © 2005 Steve Gribble 5

Issues

• Replication
– replication can exist for performance of availability
– can there be multiple copies of a file in the network?
– if multiple copies, how are updates handled?
– what if there’s a network partition and clients work on

separate copies?
– at what level is replication visible?

3/4/05 © 2005 Steve Gribble 6

Issues

• Performance
– what is the cost of remote operation?
– what is the cost of file sharing?
– how does the system scale as the number of clients grows?
– what are the performance limitations: network, CPU, disks,

protocols, data copying?

4

3/4/05 © 2005 Steve Gribble 7

Example Systems: NFS

• The Sun Network File System (NFS) has become a
common standard for distributed UNIX file access.

• NFS runs over LANS (even over WANs -- slowly).
• Basic idea:

– allow a remote directory to be “mounted” (spliced) onto a
local directory

– gives access to that remote directory and all its
descendants as if they were part of the local hierarchy.

• Ex:
– I mount /usr/gribble on Node1 onto /students/foo on Node2.

Users on Node2 can then access my files as /students/foo.
If I had a file /usr/gribble/myfile, users on Node2 see it as
/students/foo/myfile.

3/4/05 © 2005 Steve Gribble 8

NFS

• NFS defines a set of RPC operations for remote file
access:
– searching a directory
– reading directory entries
– manipulating links and directories
– reading/writing files

• Every node may be both a client and server.

5

3/4/05 © 2005 Steve Gribble 9

NFS Implementation

• NFS defines new layers in the Unix file system

System Call Interface

Virtual File System

buffer cache/ inode table

(local files) (remote files)

UFS NFS

The virtual file system provides a standard

interface, using vnodes as file handles. A vnode

describes either a local or remote file.

RPCS to other (server) nodes

RPC requests from remote clients, and
server responses

• Buffer cache caches remote file blocks and attributes

3/4/05 © 2005 Steve Gribble 10

NFS

• On an open, the client asks the server whether its
cached blocks are up to date.

• Once a file is open, different clients can write it and
get inconsistent data.

• Modified data is flushed back to the server every 30
seconds.

6

3/4/05 © 2005 Steve Gribble 11

The Andrew File System

• Developed at CMU to support all of its student
computing.

• Consists of workstation clients and dedicated file
server machines.

• Workstations have local disks, used to cache files
being used locally (originally whole files, now 64K file
chunks).

• Andrew has a single name space -- your files have
the same names everywhere in the world.

• Andrew is good for distant operation because of its
local disk caching: after a slow startup, most
accesses are to local disk.

3/4/05 © 2005 Steve Gribble 12

AFS

• Need for scaling led to reduction of client-server
message traffic.

• Once a file is cached, all operations are performed
locally.

• On close, if the file is modified, it is replaced on the
server.

• The client assumes that its cache is up to date,
unless it receives a callback message from the
server saying otherwise. On file open, if the client
has received a callback on the file, it must fetch a
new copy; otherwise it uses its locally-cached copy.

7

3/4/05 © 2005 Steve Gribble 13

Distributed File Systems

• Performance is always an issue
– there is a tradeoff between performance and the semantics

of file operations (e.g., for shared files).

• Caching of file blocks is crucial in any file system,
distributed or otherwise
– As memories get larger, most read requests can be

serviced out of file buffer cache (local memory).
– Maintaining coherency of those caches is a crucial design

issue.

• Newer systems are dealing with issues such as
disconnected file operation for mobile computers.

