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Even coarse architectural trends
impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

— 1980: 1 MHz Apple I+ == $2000
— 2005: 3.4 GHz Pentium 4 == $999
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* Primary memory capacity
— same story, same reason (Moore’s Law)

+ 1978: 512K of VAX-11/780 memory for $30,000
+ Today:

512MB PC2700 333MHz 184-pin DDR In Stock
SDRAM DIMM

Edge Memary

Itema: 370212

Flatform: N Mfrs: PELS7S10

$114.95
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Disk capacity, 1975-1989
— doubled every 3+ years

— 25% improvement each year
— factor of 10 every decade

— Still exponential, but far less rapid than processor
performance

+ Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!
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Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
— 1 TB costs $1K, 1 PB costs $1M

+ In3years, 1 GB will cost $.10
— 1 TB for $100, 1 PB for $100K
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+ Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

» What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save
“scarce” storage and bandwidth!

— What else?
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BUSINESS/FINANCIAL DESK
TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC''s
By JOHN MARKOFF (NYT) 649 words:

SAN FRANCISCO, Oct. 21 -- A home-brew supercomputer, assembled from off-the-shelf personal computers i just one month at a cost of
stightly more than $5 millon, is about to be ranked as one of the fastest machines in the world
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The Virginia Tech supercomputer, put together from 1,100 Apple Macintosh computers, has been successfully tested in recent days, according
to Jack Dongarra, a University of Tennessee computer scienfit who maintains a ksting of the world's 500 fastest machines.
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Lower-level architecture affects the OS
dramatically

+ Architectural support can vastly simplify (or
complicate!) OS tasks
— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory
+ because of lack of hardware support
— Most Intel-based PCs still lack support for 64-bit addressing

« even though available for a decade on other platforms: MIPS,
Alpha, IBM, etc...

« this will change mostly due to AMD’s new 64-bit architecture
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Architectural features affecting OS’s

» These features were built primarily to support OS’s:
timer (clock) operation

— synchronization instructions (e.g., atomic test-and-set)

— memory protection

— /0 control operations

— interrupts and exceptions

— protected modes of execution (kernel vs. user)

— protected instructions

— system calls (and software interrupts)

1/4/05 ©2005 Steve Gribble 9

Protected instructions

+ some instructions are restricted to the OS
— known as protected or privileged instructions
* e.g., only the OS can:
— directly access I/O devices (disks, network cards)
* why?
manipulate memory management state
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
« interrupt priority level
* why?
— halt instruction
* why?

1/4105 ©2005 Steve Gribble 10

OS protection

» So how does the processor know if a protected
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode
« VAX, x86 support 4 protection modes
+ why more than 2?
— mode is set by status bit in a protected processor register
* user programs execute in user mode
+ OS executes in kernel mode (OS == kernel)
» Protected instructions can only be executed in the
kernel mode

— what happens if user mode executes a protected
instruction?
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Crossing protection boundaries

* So how do user programs do something privileged?
— e.g., how can you write to a disk if you can’t do I/O
instructions?
+ User programs must call an OS procedure
— OS defines a sequence of system calls
— how does the user-mode to kernel-mode transition happen?
» There must be a system call instruction, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
— saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller's parameters (e.g., pointers)

— must be a way to return to user mode once done
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A kernel crossing illustrated

Netscape: read( )

trap to kernel
mode; save app
user mode state
kernel mode
restore app
trap handler state, return to
user mode,
find read( ) resume
handler in
vector table
read( ) kernel routine
1/4/05
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System call issues

* What would happen if kernel didn’t save state?
* Why must the kernel verify arguments?

» How can you reference kernel objects as arguments
or results to/from system calls?
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Memory protection

OS must protect user programs from each other
— maliciousness, ineptitude

OS must also protect itself from user programs
— integrity and security

— what about protecting user programs from OS?

+ Simplest scheme: base and limit registers

— are these protected?

Prog A
base and limit registers
Prog B are loaded by OS before
starting program
Prog C
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More sophisticated memory protection

+ coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling
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OS control flow

after the OS has booted, all entry to the kernel
happens as the result of an event
— event immediately stops current execution
— changes mode to kernel mode, event handler is called
kernel defines handlers for each event type
— specific types are defined by the architecture
« e.g.: timer event, /O interrupt, system call trap
— when the processor receives an event of a given type, it
« transfers control to handler within the OS

handler saves program state (PC, regs, etc.)
handler functionality is invoked

handler restores program state, returns to program
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Interrupts and exceptions

+ Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
* e.g., a page fault, write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
« e.g., device finishes I/0
* e.g., timer fires
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I/0 control

* Issues:
— how does the kernel start an 1/0?
« special I/O instructions
* memory-mapped I/O
— how does the kernel notice an I/O has finished?
« polling
« interrupts
* Interrupts are basis for asynchronous 1/0
— device performs an operation asynch to CPU
— device sends an interrupt signal on bus when done
— in memory, a vector table contains list of addresses of
kernel routines to handle various interrupt types
+ who populates the vector table, and when?
— CPU switches to address indicated by vector specified by
interrupt signal
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Timers

* How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt

« “quantum”: how big should it be set?
— when timer fires, an interrupt transfers control back to OS
«+ at which point OS must decide which program to schedule next
« very interesting policy question: we'll dedicate a class to it
+ Should the timer be privileged?
— for reading or for writing?
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Synchronization

* Interrupts cause a wrinkle:
— may occur any time, causing code to execute that interferes
with code that was interrupted
— OS must be able to synchronize concurrent processes
+ Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically
— one method: turn off interrupts before the sequence,
execute it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
« read-modify-write
« test-and-set
« load-linked store-conditional
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“Concurrent programming”

» Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

+ Arises from the architecture

+ Can be sugar-coated, but cannot be totally
abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming
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