CSE 451: Operating Systems
Winter 2005

Lecture 2

Architectural Support for
Operating Systems

Steve Gribble

Even coarse architectural trends
impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

— 1980: 1 MHz Apple I+ == $2000
— 2005: 3.4 GHz Pentium 4 == $999

1/4/05 ©2005 Steve Gribble

* Primary memory capacity
— same story, same reason (Moore’s Law)

+ 1978: 512K of VAX-11/780 memory for $30,000
+ Today:

512MB PC2700 333MHz 184-pin DDR In Stock
SDRAM DIMM

Edge Memary

Itema: 370212

Flatform: N Mfrs: PELS7S10

$114.95

1/4/05 ©2005 Steve Gribble

Disk capacity, 1975-1989
— doubled every 3+ years

— 25% improvement each year
— factor of 10 every decade

— Still exponential, but far less rapid than processor
performance

+ Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!

1/4/05 ©2005 Steve Gribble

Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
— 1 TB costs $1K, 1 PB costs $1M

+ In3years, 1 GB will cost $.10
— 1 TB for $100, 1 PB for $100K

1/4/05 ©2005 Steve Gribble

1/4/05 ©2005 Steve Gribble

+ Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

» What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save
“scarce” storage and bandwidth!

— What else?




Archive @he New York Times
S G Al e A eesoen e T
[ [FostnDa: 5] © Welcoms, lazowska

i page s i ready, and s vl i remain velsbe o 90 days. Instructions fo Sving | Abou i Sevvic | urchase Hstory

BUSINESS/FINANCIAL DESK
TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC''s
By JOHN MARKOFF (NYT) 649 words:

SAN FRANCISCO, Oct. 21 -- A home-brew supercomputer, assembled from off-the-shelf personal computers i just one month at a cost of
stightly more than $5 millon, is about to be ranked as one of the fastest machines in the world

ercomputer, put together
1d of high performance computing, where the fastest ma
bu

hricians and students at Virginia Poly
have traditionally cost from $100 millor

s shaking up the esoteric

ion and taken several

The Virginia Tech supercomputer, put together from 1,100 Apple Macintosh computers, has been successfully tested in recent days, according
to Jack Dongarra, a University of Tennessee computer scienfit who maintains a ksting of the world's 500 fastest machines.

The offcial results f
which is powere
other ultra-fast comput

ranking wil no
0 1B.M. micropror

orted until nest month at & supercomputer indu
s, was able to compute at 7.41 triion oper,

et But the Apple-ba
second, a speed

1/4/05 ©2005 Steve Gribble 7

Lower-level architecture affects the OS
dramatically

+ Architectural support can vastly simplify (or
complicate!) OS tasks
— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory
+ because of lack of hardware support
— Most Intel-based PCs still lack support for 64-bit addressing

« even though available for a decade on other platforms: MIPS,
Alpha, IBM, etc...

« this will change mostly due to AMD’s new 64-bit architecture

1/4/05 ©2005 Steve Gribble 8

Architectural features affecting OS’s

» These features were built primarily to support OS’s:
timer (clock) operation

— synchronization instructions (e.g., atomic test-and-set)

— memory protection

— /0 control operations

— interrupts and exceptions

— protected modes of execution (kernel vs. user)

— protected instructions

— system calls (and software interrupts)

1/4/05 ©2005 Steve Gribble 9

Protected instructions

+ some instructions are restricted to the OS
— known as protected or privileged instructions
* e.g., only the OS can:
— directly access I/O devices (disks, network cards)
* why?
manipulate memory management state
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
« interrupt priority level
* why?
— halt instruction
* why?

1/4105 ©2005 Steve Gribble 10

OS protection

» So how does the processor know if a protected
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode
« VAX, x86 support 4 protection modes
+ why more than 2?
— mode is set by status bit in a protected processor register
* user programs execute in user mode
+ OS executes in kernel mode (OS == kernel)
» Protected instructions can only be executed in the
kernel mode

— what happens if user mode executes a protected
instruction?

1/4105 ©2005 Steve Gribble 1

Crossing protection boundaries

* So how do user programs do something privileged?
— e.g., how can you write to a disk if you can’t do I/O
instructions?
+ User programs must call an OS procedure
— OS defines a sequence of system calls
— how does the user-mode to kernel-mode transition happen?
» There must be a system call instruction, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
— saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller's parameters (e.g., pointers)

— must be a way to return to user mode once done

1/4105 ©2005 Steve Gribble 12




A kernel crossing illustrated

Netscape: read( )

trap to kernel
mode; save app
user mode state
kernel mode
restore app
trap handler state, return to
user mode,
find read( ) resume
handler in
vector table
read( ) kernel routine
1/4/05

©2005 Steve Gribble

System call issues

* What would happen if kernel didn’t save state?
* Why must the kernel verify arguments?

» How can you reference kernel objects as arguments
or results to/from system calls?

1/4/05 ©2005 Steve Gribble

Memory protection

OS must protect user programs from each other
— maliciousness, ineptitude

OS must also protect itself from user programs
— integrity and security

— what about protecting user programs from OS?

+ Simplest scheme: base and limit registers

— are these protected?

Prog A
base and limit registers
Prog B are loaded by OS before
starting program
Prog C

1/4/05 ©2005 Steve Gribble

More sophisticated memory protection

+ coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

1/4/05 ©2005 Steve Gribble

OS control flow

after the OS has booted, all entry to the kernel
happens as the result of an event
— event immediately stops current execution
— changes mode to kernel mode, event handler is called
kernel defines handlers for each event type
— specific types are defined by the architecture
« e.g.: timer event, /O interrupt, system call trap
— when the processor receives an event of a given type, it
« transfers control to handler within the OS

handler saves program state (PC, regs, etc.)
handler functionality is invoked

handler restores program state, returns to program

1/4/05 ©2005 Steve Gribble

Interrupts and exceptions

+ Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
* e.g., a page fault, write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
« e.g., device finishes I/0
* e.g., timer fires

1/4/05 ©2005 Steve Gribble




I/0 control

* Issues:
— how does the kernel start an 1/0?
« special I/O instructions
* memory-mapped I/O
— how does the kernel notice an I/O has finished?
« polling
« interrupts
* Interrupts are basis for asynchronous 1/0
— device performs an operation asynch to CPU
— device sends an interrupt signal on bus when done
— in memory, a vector table contains list of addresses of
kernel routines to handle various interrupt types
+ who populates the vector table, and when?
— CPU switches to address indicated by vector specified by
interrupt signal

1/4105 ©2005 Steve Gribble 19

Timers

* How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt

« “quantum”: how big should it be set?
— when timer fires, an interrupt transfers control back to OS
«+ at which point OS must decide which program to schedule next
« very interesting policy question: we'll dedicate a class to it
+ Should the timer be privileged?
— for reading or for writing?

1/4105 ©2005 Steve Gribble 20

Synchronization

* Interrupts cause a wrinkle:
— may occur any time, causing code to execute that interferes
with code that was interrupted
— OS must be able to synchronize concurrent processes
+ Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically
— one method: turn off interrupts before the sequence,
execute it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
« read-modify-write
« test-and-set
« load-linked store-conditional

1/4105 ©2005 Steve Gribble 21

“Concurrent programming”

» Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

+ Arises from the architecture

+ Can be sugar-coated, but cannot be totally
abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

1/4105 ©2005 Steve Gribble 2




