
1

CSE 451: Operating Systems
Winter 2005

Lecture 6
Scheduling

Steve Gribble

1/9/05 UW CSE451, © 2005 Steve Gribble 2

Scheduling

• In discussion process management, we talked about
context switching between threads/process on the
ready queue
– but, we glossed over the details of which process or thread

is chosen next
– making this decision is called scheduling

• scheduling is policy
• context switching is mechanism

• Today, we’ll look at:
– the goals of scheduling

• starvation
– well-known scheduling algorithms

• standard UNIX scheduling

1/9/05 UW CSE451, © 2005 Steve Gribble 3

Multiprogramming and Scheduling

• Multiprogramming increases resource utilization and
job throughput by overlapping I/O and CPU
– today: look at scheduling policies

• which process/thread to run, and for how long
– schedulable entities are usually called jobs

• processes, threads, people, disk arm movements, …

• There are two time scales of scheduling the CPU:
– long term: determining the multiprogramming level

• how many jobs are loaded into primary memory
• act of loading in a new job (or loading one out) is swapping

– short-term: which job to run next to result in “good service”
• happens frequently, want to minimize context-switch overhead
• good service could mean many things

1/9/05 UW CSE451, © 2005 Steve Gribble 4

Scheduling

• The scheduler is the module that moves jobs from
queue to queue
– the scheduling algorithm determines which job(s) are

chosen to run next, and which queues they should wait on
– the scheduler is typically run when:

• a job switches from running to waiting
• when an interrupt occurs

– especially a timer interrupt
• when a job is created or terminated

• There are two major classes of scheduling systems
– in preemptive systems, the scheduler can interrupt a job

and force a context switch
– in non-preemptive systems, the scheduler waits for the

running job to explicitly (voluntarily) block

1/9/05 UW CSE451, © 2005 Steve Gribble 5

Scheduling Goals

• Scheduling algorithms can have many different goals
(which sometimes conflict)
– maximize CPU utilization
– maximize job throughput (#jobs/s)
– minimize job turnaround time (Tfinish – Tstart)
– minimize job waiting time (Avg(Twait): average time spent

on wait queue)
– minimize response time (Avg(Tresp): average time spent

on ready queue)
• Goals may depend on type of system

– batch system: strive to maximize job throughput and
minimize turnaround time

– interactive systems: minimize response time of interactive
jobs (such as editors or web browsers)

1/9/05 UW CSE451, © 2005 Steve Gribble 6

Scheduler Non-goals

• Schedulers typically try to prevent starvation
– starvation occurs when a process is prevented from making

progress, because another process has a resource it needs
• A poor scheduling policy can cause starvation

– e.g., if a high-priority process always prevents a low-priority
process from running on the CPU

• Synchronization can also cause starvation
– we’ll see this next class
– roughly, if somebody else always gets a lock I need, I can’t

make progress



2

1/9/05 UW CSE451, © 2005 Steve Gribble 7

Algorithm #1: FCFS/FIFO

• First-come first-served (FCFS)
– jobs are scheduled in the order that they arrive
– “real-world” scheduling of people in lines

• e.g. supermarket, bank tellers, MacDonalds, …
– typically non-preemptive

• no context switching at supermarket!
– jobs treated equally, no starvation

• except possibly for infinitely long jobs

• Sounds perfect!
– what’s the problem?

1/9/05 UW CSE451, © 2005 Steve Gribble 8

FCFS picture

• Problems:
– average response time and turnaround time can be large

• e.g., small jobs waiting behind long ones
• results in high turnaround time

– may lead to poor overlap of I/O and CPU

Job A B C

CB Job A

time

1/9/05 UW CSE451, © 2005 Steve Gribble 9

Algorithm #2: SJF

• Shortest job first (SJF)
– choose the job with the smallest expected CPU burst
– can prove that this has optimal min. average waiting time

• Can be preemptive or non-preemptive
– preemptive is called shortest remaining time first (SRTF)

• Sounds perfect!
– what’s the problem here?

1/9/05 UW CSE451, © 2005 Steve Gribble 10

SJF Problem

• Problem: impossible to know size of future CPU burst
– from your theory class, equivalent to the halting problem
– can you make a reasonable guess?

• yes, for instance looking at past as predictor of future
• but, might lead to starvation in some cases!

1/9/05 UW CSE451, © 2005 Steve Gribble 11

Priority Scheduling

• Assign priorities to jobs
– choose job with highest priority to run next

• if tie, use another scheduling algorithm to break (e.g. FCFS)
– to implement SJF, priority = expected length of CPU burst

• Abstractly modeled as multiple “priority queues”
– put ready job on queue associated with its priority

• Sound perfect!
– what’s wrong with this?

1/9/05 UW CSE451, © 2005 Steve Gribble 12

Priority Scheduling: problem

• The problem: starvation
– if there is an endless supply of high priority jobs, no low-

priority job will ever run
• Solution: “age” processes over time

– increase priority as a function of wait time
– decrease priority as a function of CPU time
– many ugly heuristics have been explored in this space



3

1/9/05 UW CSE451, © 2005 Steve Gribble 13

Round Robin

• Round Robin scheduling (RR)
– ready queue is treated as a circular FIFO queue
– each job is given a time slice, called a quantum

• job executes for duration of quantum, or until it blocks
• time-division multiplexing (time-slicing)

– great for timesharing
• no starvation
• can be preemptive or non-preemptive

• Sounds perfect!
– what’s wrong with this?

1/9/05 UW CSE451, © 2005 Steve Gribble 14

RR problems

• Problems:
– what do you set the quantum to be?

• no setting is “correct”
– if small, then context switch often, incurring high overhead
– if large, then response time drops

– treats all jobs equally
• if I run 100 copies of SETI@home, it degrades your service
• how can I fix this?

1/9/05 UW CSE451, © 2005 Steve Gribble 15

Combining algorithms

• Scheduling algorithms can be combined in practice
– have multiple queues
– pick a different algorithm for each queue
– and maybe, move processes between queues

• Example: multi-level feedback queues (MLFQ)
– multiple queues representing different job types

• batch, interactive, system, CPU-bound, etc.
– queues have priorities

• schedule jobs within a queue using RR
– jobs move between queues based on execution history

• “feedback”: switch from CPU-bound to interactive behavior

• Pop-quiz:
– is MLFQ starvation-free?

1/9/05 UW CSE451, © 2005 Steve Gribble 16

UNIX Scheduling

• Canonical scheduler uses a MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: first 60 priorities
• system: next 40 priorities
• real-time: next 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU


