
1

CSE 451: Operating Systems
Autumn 2005

Lecture 8
Semaphores and Monitors

Steve Gribble

1/24/05 © 2005 Steve Gribble 2

Semaphores

• semaphore = a synchronization primitive
– higher level than locks
– invented by Dijkstra in 1968, as part of the THE os

• A semaphore is:
– a variable that is manipulated atomically through two

operations, signal and wait
– wait(semaphore): decrement, block until semaphore is open

• also called P(), after Dutch word for test, also called down()
– signal(semaphore): increment, allow another to enter

• also called V(), after Dutch word for increment, also called up()

2

1/24/05 © 2005 Steve Gribble 3

Blocking in Semaphores

• Each semaphore has an associated queue of
processes/threads
– when wait() is called by a thread,

• if semaphore is “available”, thread continues
• if semaphore is “unavailable”, thread blocks, waits on queue

– signal() opens the semaphore
• if thread(s) are waiting on a queue, one thread is unblocked
• if no threads are on the queue, the signal is remembered for

next time a wait() is called
• In other words, semaphore has history

– this history is a counter
– if counter falls below 0 (after decrement), then the

semaphore is closed
• wait decrements counter
• signal increments counter

1/24/05 © 2005 Steve Gribble 4

Hypothetical Implementation
type semaphore = record

value: integer:
L: list of processes;

end

wait(S):
S.value = S.value - 1;
if S.value < 0
then begin

add this process to S.L;
block;
end;

signal(S):
S.value = S.value + 1;
if S.value <= 0
then begin

remove a process P from S.L;
wakeup P
end;

wait()/signal() are
critical sections!

Hence, they must be
executed atomically
with respect to each

other.

3

1/24/05 © 2005 Steve Gribble 5

Two types of semaphores

• Binary semaphore (aka mutex semaphore)
– guarantees mutually exclusive access to resource
– only one thread/process allowed entry at a time
– counter is initialized to 1

• Counting semaphore (aka counted semaphore)
– represents a resources with many units available
– allows threads/process to enter as long as more units are

available
– counter is initialized to N

• N = number of units available

1/24/05 © 2005 Steve Gribble 6

Example: bounded buffer problem

• AKA producer/consumer problem
– there is a buffer in memory

• with finite size N entries
– a producer process inserts an entry into it
– a consumer process removes an entry from it

• Processes are concurrent
– so, we must use synchronization constructs to control

access to shared variables describing buffer state

4

1/24/05 © 2005 Steve Gribble 7

Bounded Buffer using Semaphores
var mutex: semaphore = 1 ;mutual exclusion to shared data

empty: semaphore = n ;count of empty buffers (all empty to start)
full: semaphore = 0 ;count of full buffers (none full to start)

producer:
wait(empty) ; one fewer buffer, block if none available
wait(mutex) ; get access to pointers

<add item to buffer>
signal(mutex) ; done with pointers
signal(full) ; note one more full buffer

consumer:
wait(full) ;wait until there’s a full buffer
wait(mutex) ;get access to pointers

<remove item from buffer>
signal(mutex) ; done with pointers
signal(empty) ; note there’s an empty buffer

<use the item>

1/24/05 © 2005 Steve Gribble 8

Example: Readers/Writers

• Basic problem:
– object is shared among several processes
– some read from it
– others write to it

• We can allow multiple readers at a time
– why?

• We can only allow one writer at a time
– why?

5

1/24/05 © 2005 Steve Gribble 9

Readers/Writers using Semaphores
var mutex: semaphore ; controls access to readcount

wrt: semaphore ; control entry to a writer or first reader
readcount: integer ; number of readers

write process:
wait(wrt) ; any writers or readers?
 <perform write operation>
signal(wrt) ; allow others

read process:
wait(mutex) ; ensure exclusion

readcount = readcount + 1 ; one more reader
if readcount = 1 then wait(wrt) ; if we’re the first, synch with writers

signal(mutex)
<perform reading>

wait(mutex) ; ensure exclusion
readcount = readcount - 1 ; one fewer reader
if readcount = 0 then signal(wrt) ; no more readers, allow a writer

signal(mutex)

1/24/05 © 2005 Steve Gribble 10

Readers/Writers notes

• Note:
– the first reader blocks if there is a writer

• any other readers will then block on mutex
– if a writer exists, last reader to exit signals waiting writer

• can new readers get in while writer is waiting?
– when writer exits, if there is both a reader and writer waiting,

which one goes next is up to scheduler

6

1/24/05 © 2005 Steve Gribble 11

Problems with Semaphores

• They can be used to solve any of the traditional
synchronization problems, but:
– semaphores are essentially shared global variables

• can be accessed from anywhere (bad software engineering)
– there is no connection between the semaphore and the data

being controlled by it
– used for both critical sections (mutual exclusion) and for

coordination (scheduling)
– no control over their use, no guarantee of proper usage

• Thus, they are prone to bugs
– another (better?) approach: use programming language

support

1/24/05 © 2005 Steve Gribble 12

Monitors

• A programming language construct that supports
controlled access to shared data
– synchronization code added by compiler, enforced at

runtime
– why does this help?

• Monitor is a software module that encapsulates:
– shared data structures
– procedures that operate on the shared data
– synchronization between concurrent processes that invoke

those procedures

• Monitor protects the data from unstructured access
– guarantees only access data through procedures, hence in

legitimate ways

7

1/24/05 © 2005 Steve Gribble 13

A monitor

shared data

waiting queue of processes
trying to enter the monitor

operations (procedures)at most one
process in monitor

at a time

1/24/05 © 2005 Steve Gribble 14

Monitor facilities

• Mutual exclusion
– only one process can be executing inside at any time

• thus, synchronization implicitly associated with monitor
– if a second process tries to enter a monitor procedure, it

blocks until the first has left the monitor
• more restrictive than semaphores!
• but easier to use most of the time

• Once inside, a process may discover it can’t
continue, and may wish to sleep
– or, allow some other waiting process to continue
– condition variables provided within monitor

• processes can wait or signal others to continue
• condition variable can only be accessed from inside monitor

8

1/24/05 © 2005 Steve Gribble 15

Condition Variables

• A place to wait; sometimes called a rendezvous point
• Three operations on condition variables

– wait(c)
• release monitor lock, so somebody else can get in
• wait for somebody else to signal condition
• thus, condition variables have wait queues

– signal(c)
• wake up at most one waiting process/thread
• if no waiting processes, signal is lost
• this is different than semaphores: no history!

– broadcast(c)
• wake up all waiting processes/threads

1/24/05 © 2005 Steve Gribble 16

Bounded Buffer using Monitors
Monitor bounded_buffer {
 buffer resources[N];
 condition not_full, not_empty;

 procedure add_entry(resource x) {
 while(array “resources” is full)
 wait(not_full);
 add “x” to array “resources”
 signal(not_empty);
 }
 procedure get_entry(resource *x) {
 while (array “resources” is empty)
 wait(not_empty);
 *x = get resource from array “resources”
 signal(not_full);
 }

9

1/24/05 © 2005 Steve Gribble 17

Two Kinds of Monitors

• Hoare monitors: signal(c) means
– run waiter immediately
– signaller blocks immediately

• condition guaranteed to hold when waiter runs
• but, signaller must restore monitor invariants before signalling!

• Mesa monitors: signal(c) means
– waiter is made ready, but the signaller continues

• waiter runs when signaller leaves monitor (or waits)
• condition is not necessarily true when waiter runs again

– signaller need not restore invariant until it leaves the monitor
– being woken up is only a hint that something has changed

• must recheck conditional case

1/24/05 © 2005 Steve Gribble 18

Examples

• Hoare monitors
– if (notReady)

• wait(c)
• Mesa monitors

– while(notReady)
• wait(c)

• Mesa monitors easier to use
– more efficient
– fewer switches
– directly supports broadcast

• Hoare monitors leave less to chance
– when wake up, condition guaranteed to be what you expect

10

1/24/05 © 2005 Steve Gribble 19

Condition Variables and Mutex

• Yet another construct:
– condition variables can be used with mutexes

 pthread_mutex_t mu;
 pthread_cond_t co;
 boolean ready;
 void foo() {
 pthread_mutex_lock(&mu);
 if (!ready)
 pthread_cond_wait(&co, &mu);
 …
 ready = TRUE;
 pthread_cond_signal(&co); // unlock and signal atomically
 pthread_mutex_unlock(&mu);
 }

• Think of a monitor as a language feature
– under the covers, compiler knows about monitors
– compiler inserts a mutex to control entry and exit of processes to

the monitor’s procedures

