Reminders

n Homework 4 & project 2
» Project 2 code due midnight today
- Project writeup & homework 4 tomorrow in lecture
n Midterm on Monday, November 8
» Midterm review tomorrow in lecture
n Today’s office hours in 006
n Grading
» Homework 3 back today (average: 84/100), solutions online
I still have some old homework/projects, pick up at the end

n Today:
» Questions
o Clear up issues on homework 3
» Project 3 preview
o Virtual memory stuff

* Project 2 — last questions?

* Homework 4 questions?

* Clearing up synchronization issues

n Monitors
» How should we use them?
» Why is this weird inside a monitor?
P(mutex);
account+=balance;
V(mutex);
n Smoker problem
» What's wrong if we had:
» Agent: V(ingr[i]); V(ingr[jl);
» Some smoker: P(ingr[a]); P(ingr[b]);

n General note: always init your semaphores!

* Clearing up synchronization issues

n File sharing problem

» Recall: processes can share a file as long as
Spid < n
» What's wrong here:
» file_open(pid) {
if(current + pid >= n)
sum.wait();
current += pid;

File sharing — (almost) correct solution

type file = nonitor
var space_avail abl e: condition

total: integer
procedure file_open(id)
begi n

while (total + id >=n)
space_avai l able. wai t();
total = total + id;

end
procedure file_close(id)
begi n

total = total - id;

space_avai l abl e. signal ();
end




File sharing — correct solution

type file = nonitor
var space_avail abl e: conditional _wait

total: integer
procedure file_open(id)
begin

while (total + id >=n)
space_avail abl e. wai t (id);

total = total + id;

if (total <n - 1)
space_avai | abl e. signal ();

end
procedure file_close(id)
begin
total = total - id,
space_avai |l abl e. si gnal ();
end

i Project 3 preview

n Out right after midterm, due Nov. 19
n Given: vmtrace
» Takes a memory trace file (also given)
» Outputs # of references, # of page faults,
compulsory faults, page evictions, pageouts.
n Implement an LRU-like page replacement
algorithm
n Design and perform an experiment on
some aspect of virtual memory

* Project 3 experiment

n Have a hypothesis
~ “Big pages are better”
~ “Algorithm vy is better”

~ “Prefetching will reduce the number of page
faults”

~ “If we understand why x happens, we can fix it”
n Two steps
» Determine baseline behavior

» New test

» Change one aspect of the system, observe
differences 9

i Some Ideas

n What is the ideal page size for this trace
under different amounts of main memory?

n How much better is page replacement
algorithm X than LRU
» “Real” LRU, FIFO, 2Q, ARC, etc

n How close can we come to LRU without
doing any work between page faults?
» No scanning, constant work per page fault

n How important is recency vs. frequency in
predicting page re-use?

* Not so good ideas

» What kind of music is made when I convert
the address trace to notes?

» Can I make a fractal out of this data?

* VM stuff

virtual address

virtual page #

physical memory

page

page table frame 0
page

frame 1

physical address

page
page frame # —— | page frame # | offset }—‘ frame 2

page
frame 3

frame Y
Often, first page table entry (page zero) is left invalid by the OS
n Any ideas why?

n How can we use paging to set up sharing of memory between two
processes? 12




* TLBs

virtual address
virtual page #

physical memory

page table page
frame 0
page
L physical address frame
missi>{ page frame # —v{ page frame # | offset }—' frz:?eeZ
page

hit frame 3

page
0 Why?

» No TLB: Average number of memory accesses per virtual addr ref: 2
o With a TLB (99% hit rate): 0.99*1 + 0.01*2 = 1.01

* More page table/TLB examples

n Intel x86
» 4K pages (common) or 4M pages (jumbo pages)
» Two-level page tables
n Pentium 4: 64-entry TLB
n AMD-64
o still 4K or 2M pages
» Four (1) PT levels for 4K pages; three for 2M pages
» Two-level TLB (40 entries/512 entries)
n Alpha
» 8K page size
» Three-level page table, each one page
» Alpha 21264: 128-entry TLB

Virlual Addi Fi it
@ 2-level Page Table rud) Address Forma

10 Bits 10 Bits 12 Bits
. [ PDENum PTE Num Page Offset |
@ 4KB Page Size
. 32 bit addresses PI_) Elionat _ y
20 Bits 11Bits 1Bt
. PDE/PTE of 32 bits [ Physical Frame Num | Prot, Mod, Ref P
alid

i Example Page Sizes

Computer
n Atlas 512 48-bit words
n Honeywell-Multics 1024 36-bit words
n IBM 370/XA and 370/ESA 4 Kbytes

Page Size

n VAX family 512 bytes

n IBM AS/400 512 bytes

» DEC Alpha 8 Kbytes

n MIPS 4 kbytes to 16 Mbytes

n UltraSPARC 8 Kbytes to 4 Mbytes

n Pentium 4 Kbytes or 4 Mbytes

n PowerPc 4 Kbytes

n IA-64 4 Kbytes to 4 Gbytes
14

i Quick VM exercise

n Consider a virtual address space of 8 pages
of 1024 words each, mapped onto a
physical memory of 32 frames
» Virtual address size (in bits):

» Physical address size (in bits):

Describe the result of accessing the
following virtual addresses:

0x0
0x00803024
0x00c00136

(222 == 0x400000,
212 —— 0x1000)

Answers: fault, 0x00020024, fault




PTBR

Consider a x86 program
consisting of 33% load/store
instructions. How many extra
memory accesses per
instruction executed does this
program need when the TLB
has a 0%, 95%, or 100% hit
rate?

Answers: 1.3 base memory accesses per

instruction, 100%=0 extra, 0%=2.66 extra,
95%=0.05"2.66 extra

Table
[ oo ] Phys Addr 0x5000)
0 00
1| Ox4e001
What is the data stored at Directory 2| ox67001
virtual address 0x004020042 ED Ao O 1000 8| oo
0. ox0 4 00
1 oxi001 g
2| Ox5001 -
a| oxsom1 1024 Ox0
4 00
- Page Table
o Phys Addr 0x8000)
1024 Ox0 0%9000
Ox326001
Ox41001

List the physical frames that
this address space has direct
access to. Is this address

space properly isolated from
accessing any other frames?

Answers: 0x1000, 0x5000, 0x8000, 0x326000,
0x4£000, 0x200000, x67000, Ox4e000.
Ignoring kernel/user bits and write protection,
the page tables have been made accessable to
the address space (virtual addresses
0x00400000-0x004ffifff), 50 a process running
in this address space could map-in any physical
frame it wanted to.

0x1000 Page Table
Phys Addr 0x5000)
o] oo
1 [ 0x4e001
Page Directory 2| ox67001
(Phys Addr 0x1000) 3| ox20001
o] o0 4 o0
1] oxioot -
2| ox5001 -
3 [ 0oxB001 10240y
4 o0
B Page Table
o Phys Addr OxB000)
1024 0x0 0] ox9000
1| 0x326001
2 oxar001
a oo
4 o0
0x0




