
1

CSE 451: Operating Systems
Spring 2006

Module 10
Memory Management

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

Goals of memory management

� Allocate scarce memory resources among competing
processes, maximizing memory utilization and
system throughput

� Provide a convenient abstraction for programming
(and for compilers, etc.)

� Provide isolation between processes
� we have come to view �addressability� and �protection� as

inextricably linked, even though they�re really orthogonal

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

Tools of memory management

� Base and limit registers
� Swapping
� Paging (and page tables and TLBs)
� Segmentation (and segment tables)
� Page fault handling => Virtual memory
� The policies that govern the use of these

mechanisms

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

Today�s desktop and server systems

� The basic abstraction that the OS provides for
memory management is virtual memory (VM)
� VM enables programs to execute without requiring their

entire address space to be resident in physical memory
� program can also execute on machines with less RAM than it

�needs�
� many programs don�t need all of their code or data at once

(or ever)
� e.g., branches they never take, or data they never read/write
� no need to allocate memory for it, OS should adjust amount

allocated based on run-time behavior
� virtual memory isolates processes from each other

� one process cannot name addresses visible to others; each
process has its own isolated address space

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

� Virtual memory requires hardware and OS support
� MMU�s, TLB�s, page tables, page fault handling, �

� Typically accompanied by swapping, and at least
limited segmentation

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

A trip down Memory Lane �

� Why?
� Because it�s instructive
� Because embedded processors (98% or more of all

processors) typically don�t have virtual memory

� First, there was job-at-a-time batch programming
� programs used physical addresses directly
� OS loads job (perhaps using a relocating loader to �offset�

branch addresses), runs it, unloads it
� what if the program wouldn�t fit into memory?

� manual overlays!

� An embedded system may have only one program!

2

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

� Swapping
� save a program�s entire state (including its memory image)

to disk
� allows another program to be run
� first program can be swapped back in and re-started right

where it was

� The first timesharing system, MIT�s �Compatible Time
Sharing System� (CTSS), was a uni-programmed
swapping system
� only one memory-resident user
� upon request completion or quantum expiration, a swap took

place
� bow wow wow � but it worked!

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

� Then came multiprogramming
� multiple processes/jobs in memory at once

� to overlap I/O and computation
� memory management requirements:

� protection: restrict which addresses processes can use, so they
can�t stomp on each other

� fast translation: memory lookups must be fast, in spite of the
protection scheme

� fast context switching: when switching between jobs, updating
memory hardware (protection and translation) must be quick

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 9

Virtual addresses for multiprogramming

� To make it easier to manage memory of multiple
processes, make processes use virtual addresses
(which is not what we mean by �virtual memory�
today!)
� virtual addresses are independent of location in physical

memory (RAM) where referenced data lives
� OS determines location in physical memory

� instructions issued by CPU reference virtual addresses
� e.g., pointers, arguments to load/store instructions, PC �

� virtual addresses are translated by hardware into physical
addresses (with some setup from OS)

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

� The set of virtual addresses a process can reference
is its address space
� many different possible mechanisms for translating virtual

addresses to physical addresses
� we�ll take a historical walk through them, ending up with our

current techniques

� Note: We are not yet talking about paging, or virtual
memory � only that the program issues addresses in
a virtual address space, and these must be
�adjusted� to reference memory (the physical address
space)
� for now, think of the program as having a contiguous virtual

address space that starts at 0, and a contiguous physical
address space that starts somewhere else

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 11

Old technique #1: Fixed partitions

� Physical memory is broken up into fixed partitions
� all partitions are equally sized, partitioning never changes
� hardware requirement: base register, limit register

� physical address = virtual address + base register
� base register loaded by OS when it switches to a process

� how do we provide protection?
� if (physical address > base + limit) then� ?

� Advantages
� Simple

� Problems
� internal fragmentation: the fixed size partition is larger than

what was requested
� external fragmentation: two small partitions left, but one big

job � what sizes should the partitions be??
6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 12

Mechanics of fixed partitions

partition 0

partition 1

partition 2

partition 3

0

2K

6K

8K

12K

physical memory

offset +
virtual address

P2�s base: 6K
base register

2K

<?

no

raise
protection fault

limit register

yes

3

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 13

Old technique #2: Variable partitions

� Obvious next step: physical memory is broken up into
variable-sized partitions
� hardware requirements: base register, limit register
� physical address = virtual address + base register
� how do we provide protection?

� if (physical address > base + limit) then� ?

� Advantages
� no internal fragmentation

� simply allocate partition size to be just big enough for process
(assuming we know what that is!)

� Problems
� external fragmentation

� as we load and unload jobs, holes are left scattered throughout
physical memory

� slightly different than the external fragmentation for fixed
partition systems

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 14

Mechanics of variable partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3�s base
base register

P3�s size
limit register

<?

raise
protection fault

no

yes

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 15

Dealing with fragmentation

partition 0

partition 1

partition 2

partition 3

partition 4

� Swap a program out
� Re-load it, adjacent to another
� Adjust its base register
� �Lather, rinse, repeat�
� Ugh

partition 0

partition 1

partition 2
partition 3

partition 4

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 16

Modern technique: Paging

� Solve the external fragmentation problem by using
fixed sized units in both physical and virtual memory

frame 0

frame 1

frame 2

frame Y

physical address space

�

page 0

page 1

page 2

page X

virtual address space

�

page 3

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 17

User�s perspective

� Processes view memory as a contiguous address
space from bytes 0 through N
� virtual address space (VAS)

� In reality, virtual pages are scattered across physical
memory frames � not contiguous as earlier
� virtual-to-physical mapping
� this mapping is invisible to the program

� Protection is provided because a program cannot
reference memory outside of its VAS
� the virtual address 0xDEADBEEF maps to different physical

addresses for different processes

� Note: Assume for now that all pages of the address
space are resident in memory � no �page faults�

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 18

Address translation

� Translating virtual addresses
� a virtual address has two parts: virtual page number & offset
� virtual page number (VPN) is index into a page table
� page table entry contains page frame number (PFN)
� physical address is PFN::offset

� Page tables
� managed by the OS
� map virtual page number (VPN) to page frame number (PFN)

� VPN is simply an index into the page table
� one page table entry (PTE) per page in virtual address space

� i.e., one PTE per VPN

4

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 19

Mechanics of address translation

page
frame 0

page
frame 1

page
frame 2

page
frame Y

�

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 20

Example of address translation

� Assume 32 bit addresses
� assume page size is 4KB (4096 bytes, or 212 bytes)
� VPN is 20 bits long (220 VPNs), offset is 12 bits long

� Let�s translate virtual address 0x13325328
� VPN is 0x13325, and offset is 0x328
� assume page table entry 0x13325 contains value 0x03004

� page frame number is 0x03004
� VPN 0x13325 maps to PFN 0x03004

� physical address = PFN::offset = 0x03004328

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 21

Page Table Entries (PTEs)

� PTE�s control mapping
� the valid bit says whether or not the PTE can be used

� says whether or not a virtual address is valid
� it is checked each time a virtual address is used

� the referenced bit says whether the page has been accessed
� it is set when a page has been read or written to

� the modified bit says whether or not the page is dirty
� it is set when a write to the page has occurred

� the protection bits control which operations are allowed
� read, write, execute

� the page frame number determines the physical page
� physical page start address = PFN

page frame numberprotMRV
202111

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 22

Paging advantages

� Easy to allocate physical memory
� physical memory is allocated from free list of frames

� to allocate a frame, just remove it from the free list
� external fragmentation is not a problem!

� managing variable-sized allocations is a huge pain in the neck
� �buddy system�

� Leads naturally to virtual memory
� entire program need not be memory resident
� take page faults using �valid� bit
� but paging was originally introduced to deal with external

fragmentation, not to allow programs to be partially resident

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 23

Paging disadvantages

� Can still have internal fragmentation
� process may not use memory in exact multiples of pages

� Memory reference overhead
� 2 references per address lookup (page table, then memory)
� solution: use a hardware cache to absorb page table lookups

� translation lookaside buffer (TLB) � next class

� Memory required to hold page tables can be large
� need one PTE per page in virtual address space
� 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
� 4 bytes/PTE = 4MB per page table

� OS�s typically have separate page tables per process
� 25 processes = 100MB of page tables

� solution: page the page tables (!!!)
� (ow, my brain hurts�more later)

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 24

Segmentation
(We will be back to paging soon!)

� Paging
� mitigates various memory allocation complexities (e.g.,

fragmentation)
� view an address space as a linear array of bytes
� divide it into pages of equal size (e.g., 4KB)
� use a page table to map virtual pages to physical page

frames
� page (logical) => page frame (physical)

� Segmentation
� partition an address space into logical units

� stack, code, heap, subroutines, �
� a virtual address is <segment #, offset>

5

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 25

What�s the point?

� More �logical�
� absent segmentation, a linker takes a bunch of independent

modules that call each other and linearizes them
� they are really independent; segmentation treats them as

such

� Facilitates sharing and reuse
� a segment is a natural unit of sharing � a subroutine or

function

� A natural extension of variable-sized partitions
� variable-sized partition = 1 segment/process
� segmentation = many segments/process

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 26

Hardware support

� Segment table
� multiple base/limit pairs, one per segment
� segments named by segment #, used as index into table

� a virtual address is <segment #, offset>
� offset of virtual address added to base address of segment

to yield physical address

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 27

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
protection fault

no

yes

offset

baselimit

segment table

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 28

Pros and cons

� Yes, it�s �logical� and it facilitates sharing and reuse
� But it has all the horror of a variable partition system

� except that linking is simpler, and the �chunks� that must be
allocated are smaller than a �typical� linear address space

� What to do?

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 29

Combining segmentation and paging

� Can combine these techniques
� x86 architecture supports both segments and paging

� Use segments to manage logical units
� segments vary in size, but are typically large (multiple pages)

� Use pages to partition segments into fixed-size chunks
� each segment has its own page table

� there is a page table per segment, rather than per user address
space

� memory allocation becomes easy once again
� no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

Offset within segment

6/12/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 30

� Linux:
� 1 kernel code segment, 1 kernel data segment
� 1 user code segment, 1 user data segment
� N task state segments (stores registers on context switch)
� 1 �local descriptor table� segment (not really used)
� all of these segments are paged

� Note: this is a very limited/boring use of segments!

