
1

CSE 451: Operating Systems
Spring 2006

Module 16
Journaling File Systems

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

In our most recent exciting episodes �

� Original Bell Labs UNIX file system
� a simple yet practical design
� exemplifies engineering tradeoffs that are pervasive in

system design
� elegant but slow

� and performance gets worse as disks get larger

� BSD UNIX Fast File System (FFS)
� solves the throughput problem

� larger blocks
� cylinder groups
� awareness of disk performance details

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

Both are real dogs when a crash occurs

� Buffering is necessary for performance
� Suppose a crash occurs during a file creation:

1. Allocate a free inode
2. Point directory entry at the new inode

� In general, after a crash the disk data structures may
be in an inconsistent state
� metadata updated but data not
� data updated but metadata not
� either or both partially updated

� fsck (i-check, d-check) are very slow
� must touch every block
� worse as disks get larger!

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

Journaling file systems

� Became popular ~2002
� There are several options that differ in their details

� Ext3, ReiserFS, XFS, JFS, ntfs

� Basic idea
� update metadata (and possibly all data), transactionally

� �all or nothing�
� if a crash occurs, you may lose a bit of work, but the disk will

be in a consistent state
� more precisely, you will be able to quickly get it to a consistent

state by using the transaction log/journal � rather than scanning
every disk block and checking sanity conditions

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

Where is the Data?

� In the file systems we have seen already, the data is
in two places:
� On disk
� In in-memory caches

� The caches are crucial to performance, but also the
source of the potential �corruption on crash� problem

� The basic idea of the solution:
� Always leave �home copy� of data in a consistent state
� Make updates persistent by writing them to a sequential

(chronological) journal partition/file
� At your leisure, push the updates (in order) to the home

copies and reclaim the journal space

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

Redo log

� Log: an append-only file containing log records
� <start t>

� transaction t has begun
� <t,x,v>

� transaction t has updated block x and its new value is v
� Can log block �diffs� instead of full blocks

� <commit t>
� transaction t has committed � updates will survive a crash

� Comments
� Committing involves writing the redo records � the home

data needn�t be updated at this time
� No guarantees about the consistency of the file data, as

seen by the application. (This is just how things were to
begin with�)

2

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

If a crash occurs

� Recover the log
� Redo committed transactions

� Walk the log in order and re-execute updates from all
committed transactions

� Aside: note that update (write) is idempotent: can be done
any positive number of times with the same result.

� Uncommitted transactions
� Ignore them. It�s as though the crash occurred a tiny bit

earlier�

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

Managing the Log Space

� A cleaner thread walks the log in order, updating the
home locations of updates in each transaction
� Note that idempotence is important here � may crash while

cleaning is going on

� Once a transaction has been reflected to the home
blocks, it can be deleted from the log

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 9

Impact on performance

� The log is a big contiguous write
� very efficient

� And you do fewer synchronous writes
� very costly in terms of performance

� So journaling file systems can actually improve
performance (immensely)

� As well as making recovery very efficient

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

What About Deadlock?

� Why might it arise?
� What would you do about it?

5/22/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 11

Want to know more?

� CSE 444! This is a direct ripoff of database system
techniques
� But it is not Microsoft Windows Longhorn � �the file system is

a database�
� Nor is it a �log-structured file system� � there is no file

system, just a log

� �New-Value Logging in the Echo Replicated File System�, Andy
Hisgen, Andrew Birrell, Charles Jerian, Timothy Mann, Garret
Swart
� http://citeseer.ist.psu.edu/hisgen93newvalue.html

