
1

CSE 451: Operating Systems
Spring 2006

Module 5
Threads

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

What�s in a process?
� A process consists of (at least):

� an address space
� the code for the running program
� the data for the running program
� an execution stack and stack pointer (SP)

� traces state of procedure calls made
� the program counter (PC), indicating the next instruction
� a set of general-purpose processor registers and their values
� a set of OS resources

� open files, network connections, sound channels, �
� That�s a lot of concepts bundled together!
� Today: decompose:

� An address space
� Threads of control
� (Other resources�)

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

Concurrency

� Imagine a web server, which might like to handle
multiple requests concurrently
� While waiting for the credit card server to approve a

purchase for one client, it could be retrieving the data
requested by another client from disk, and assembling the
response for a third client from cached information

� Imagine a web client (browser), which might like to
initiate multiple requests concurrently
� The CSE home page has 46 �src= �� html commands, each

of which is going to involve a lot of sitting around! Wouldn�t it
be nice to be able to launch these requests concurrently?

� Imagine a parallel program running on a
multiprocessor, which might like to employ �physical
concurrency�
� For example, multiplying a large matrix � split the output

matrix into k regions and compute the entries in each region
4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

What�s needed?

� In each of these examples of concurrency (web
server, web client, parallel program):
� Everybody wants to run the same code
� Everybody wants to access the same data
� Everybody has the same privileges
� Everybody uses the same resources (open files, network

connections, etc.)

� But you�d like to have multiple hardware execution
states:
� an execution stack and stack pointer (SP)

� traces state of procedure calls made
� the program counter (PC), indicating the next instruction
� a set of general-purpose processor registers and their values

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

How could we achieve this?

� Given the process abstraction as we know it:
� fork several processes
� cause each to map to the same physical memory to share data

� see the shmget() system call for one way to do this (kind of)

� This is like making a pig fly � it�s really inefficient
� space: PCB, page tables, etc.
� time: creating OS structures, fork and copy addr space, etc.

� Some equally bad alternatives for some of the examples:
� Entirely separate web servers
� Manually programmed asynchronous programming (non-blocking

I/O) in the web client (browser)

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

Can we do better?

� Key idea:
� separate the concept of a process (address space, etc.)
� �from that of a minimal �thread of control� (execution state:

PC, etc.)

� This execution state is usually called a thread, or
sometimes, a lightweight process

2

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

Threads and processes

� Most modern OS�s (Mach, Chorus, NT, modern
UNIX) therefore support two entities:
� the process, which defines the address space and general

process attributes (such as open files, etc.)
� the thread, which defines a sequential execution stream

within a process
� A thread is bound to a single process

� processes, however, can have multiple threads executing
within them

� sharing data between threads is cheap: all see the same
address space

� creating threads is cheap too!
� Threads become the unit of scheduling

� processes are just containers in which threads execute

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

The design space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, �

Key

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 9

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

(new) Process address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 11

Process/thread separation

� Concurrency (multithreading) is useful for:
� handling concurrent events (e.g., web servers and clients)
� building parallel programs (e.g., matrix multiply, ray tracing)
� improving program structure (the Java argument)

� Multithreading is useful even on a uniprocessor
� even though only one thread can run at a time

� Supporting multithreading � that is, separating the
concept of a process (address space, files, etc.) from
that of a minimal thread of control (execution state),
is a big win
� creating concurrency does not require creating new

processes
� �faster / better / cheaper�

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 12

�Where do threads come from?�

� Natural answer: the kernel is responsible for
creating/managing threads
� for example, the kernel call to create a new thread would

� allocate an execution stack within the process address space
� create and initialize a Thread Control Block

� stack pointer, program counter, register values
� stick it on the ready queue

� we call these kernel threads

3

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 13

� Threads can also be managed at the user level (that
is, entirely from within the process)
� a library linked into the program manages the threads

� because threads share the same address space, the thread
manager doesn�t need to manipulate address spaces (which
only the kernel can do)

� threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

� the thread package multiplexes user-level threads on top of
kernel thread(s), which it treats as �virtual processors�

� we call these user-level threads

�Where do threads come from?�

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 14

Kernel threads

� OS now manages threads and processes
� all thread operations are implemented in the kernel
� OS schedules all of the threads in a system

� if one thread in a process blocks (e.g., on I/O), the OS knows
about it, and can run other threads from that process

� possible to overlap I/O and computation inside a process

� Kernel threads are cheaper than processes
� less state to allocate and initialize

� But, they�re still pretty expensive for fine-grained use
(e.g., orders of magnitude more expensive than a
procedure call)
� thread operations are all system calls

� context switch
� argument checks

� must maintain kernel state for each thread

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 15

User-level threads

� To make threads cheap and fast, they need to be
implemented at the user level
� managed entirely by user-level library, e.g., libpthreads.a

� User-level threads are small and fast
� each thread is represented simply by a PC, registers, a stack,

and a small thread control block (TCB)
� creating a thread, switching between threads, and

synchronizing threads are done via procedure calls
� no kernel involvement is necessary!

� user-level thread operations can be 10-100x faster than kernel
threads as a result

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 16

Performance example

� On a 700MHz Pentium running Linux 2.2.16:

� Processes
• fork/exit: 251 µs

� Kernel threads
• pthread_create()/pthread_join(): 94 µs (2.5x faster)

� User-level threads
• pthread_create()/pthread_join: 4.5 µs (another 20x

faster)

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 17

Performance example

� On a 700MHz Pentium running Linux 2.2.16:
� On a DEC SRC Firefly running Ultrix, 1989

� Processes
• fork/exit: 251 µs / 11,300 µs

� Kernel threads
• pthread_create()/pthread_join(): 94 µs / 948 µs (12x

faster)

� User-level threads
• pthread_create()/pthread_join: 4.5 µs / 34 µs (another

28x faster)

4/10/2006 © 2006 Gribble, Lazowska, Levy 18

The design space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, �

4

4/10/2006 © 2006 Gribble, Lazowska, Levy 19

address
space

thread

Mach, NT,
Chorus,
Linux, �

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

4/10/2006 © 2006 Gribble, Lazowska, Levy 20

address
space

thread

Mach, NT,
Chorus,
Linux, �

os kernel

CPU

User-level threads, conceptually
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

?

4/10/2006 © 2006 Gribble, Lazowska, Levy 21

address
space

thread

Mach, NT,
Chorus,
Linux, �

os kernel

(kernel thread create, destroy,
signal, wait, etc.)

CPU

User-level threads, really
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

kernel threads

4/10/2006 © 2006 Gribble, Lazowska, Levy 22

address
space

thread

Mach, NT,
Chorus,
Linux, �

os kernel

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

(kernel thread create, destroy,
signal, wait, etc.)

CPU

Multiple kernel threads �powering�
each address space

kernel threads

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 23

User-level thread implementation

� The kernel believes the user-level process is just a
normal process running code
� But, this code includes the thread support library and its

associated thread scheduler

� The thread scheduler determines when a thread runs
� it uses queues to keep track of what threads are doing: run,

ready, wait
� just like the OS and processes
� but, implemented at user-level as a library

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 24

Thread interface

� This is taken from the POSIX pthreads API:
– t = pthread_create(attributes, start_procedure)

� creates a new thread of control
� new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable)

� the calling thread blocks, sometimes called thread_block()
– pthread_signal(condition_variable)

� starts the thread waiting on the condition variable
– pthread_exit()

� terminates the calling thread
– pthread_wait(t)

� waits for the named thread to terminate

5

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 25

� Strategy 1: force everyone to cooperate
� a thread willingly gives up the CPU by calling yield()
– yield() calls into the scheduler, which context switches to

another ready thread
� what happens if a thread never calls yield()?

� Strategy 2: use preemption
� scheduler requests that a timer interrupt be delivered by the

OS periodically
� usually delivered as a UNIX signal (man signal)
� signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware
� at each timer interrupt, scheduler gains control and context

switches as appropriate

How to keep a user-level thread from
hogging the CPU?

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 26

Thread context switch

� Very simple for user-level threads:
� save context of currently running thread

� push machine state onto thread stack
� restore context of the next thread

� pop machine state from next thread�s stack
� return as the new thread

� execution resumes at PC of next thread

� This is all done by assembly language
� it works at the level of the procedure calling convention

� thus, it cannot be implemented using procedure calls
� e.g., a thread might be preempted (and then resumed) in the

middle of a procedure call

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 27

What if a thread tries to do I/O?

� The kernel thread �powering� it is lost for the duration
of the (synchronous) I/O operation!

� Could have one kernel thread �powering� each user-
level thread
� no real difference from kernel threads � �common case�

operations (e.g., synchronization) would be quick

� Could have a limited-size �pool� of kernel threads
�powering� all the user-level threads in the address
space
� the kernel will be scheduling these threads, obliviously to

what�s going on at user-level

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 28

What if the kernel preempts a thread
holding a lock?

� Other threads will be unable to enter the critical
section and will block (stall)
� tradeoff, as with everything else

� Solving this requires coordination between the kernel
and the user-level thread manager
� �scheduler activations�

� a research paper from UW with huge effect on practice
� each process can request one or more kernel threads

� process is given responsibility for mapping user-level threads onto
kernel threads

� kernel promises to notify user-level before it suspends or destroys
a kernel thread

� ACM TOCS 10,1

4/10/2006 © 2006 Gribble, Lazowska, Levy, Zahorjan 29

Summary
� You really want multiple threads per address space
� Kernel threads are much more efficient than

processes, but they�re still not cheap
� all operations require a kernel call and parameter verification

� User-level threads are:
� fast
� great for common-case operations

� creation, synchronization, destruction
� can suffer in uncommon cases due to kernel obliviousness

� I/O
� preemption of a lock-holder

� Scheduler activations are the answer
� pretty subtle though

