CSE451 Fall 2008
Section 1

Roxana Geambasu
(roxana@cs)



About Me

 Fourth year Ph.D. student

e Research In:

— Large-scale storage systems (Hank,
Steve)

— Security (Yoshi, Hank)

— Personal data management (Magda,
Hank, Steve)

* First time teaching sections in the
U.S.

- S0, I'll be learning along with you ©



Reminders

Sign-up for the mailing list
Start reading the book
— Homework 1 due on Monday

Read and start Project O (due next
Wed.)

Make sure you can access
forkbomb.cs.washigtnon.edu after
Friday

— If not, email support@cs or me



Office Hours

* Kristin: Tuesday 2-3pm and
Wednesday 4-5pm

* Nick: Monday and Wednesday 12 -
lpm

* Roxana: Wednesday 9-10am and
Friday (10:30--11:30am)



451 Projects

5 interesting but demanding projects
(mostly C):

— Practice C

— Shell & process control

— User-level threads

— Virtual memory

— File systems

First one: work individually
The other four: work in groups

Likely to be similar to projects in the
past

Start early on each project!




Project Rules

* Collaboration ok (except for the first
project)
— Let us know with whom you collaborate
 Copying Is not ok
* Use only ‘forkbomb.cs.washington.edu’!

— Debug/run your programs in a sandbox (see
forkbomb info link on the web site)

— Do NOT use attu for projects




Project Grading

 What do you think we grade about
your code?



Project Grading

Correctness: algorithm (protocol),
Implementation

Code structure and clarity
Comments

Memory management (for C, beware of mem.
leaks and buffer overflows)

Error handling (file ops, mem. allocation, all
system calls)

Input handling (unless specified otherwise)
No warnings (compile with gcc -Wall)
Performance (complexity) only when specified




Project O
C programming warm-up

Due date: Oct. 1, 11:59pm



Project O

 Part 1: Debug and extend a queue
implementation

* Part 2: Implement a hash table

* Goal of project O:

— Dust up your knowledge of C, UNIX tools
(303) and data structures (320)

— Prepare you for next projects (e.g., function
pointers)



C & UNIX Tools Background

* How many of you have:
— written a C program?
— seen a Makefile?
— used gcc?
— used gdb?



Remember from Previous

Classes?

What are those and when are they used:
* Pointers and pointer arithmetic

e Static vs. dynamic memory allocation
* Call-by-value vs. call-by-reference

* Structures, typedef

e Good reminder and resources at:

http://www.cs.washington.edu/education/courses/451/07au/section/
recl.htm



Common C Pitfalls (1)

* What's wrong and how to fix it?

char* get_city name(double latitude,

double longitude) {
char city_name[100];

return city_name;

}



Common C Pitfalls (1)

* Problem: return pointer to statically
allocated mem.

e Solution: allocate on heap

char* get_city name(double latitude,

double longitude) {
char* city_name = (char*)malloc(100);

return city_name;

}



* Slightly more subtle example:

typedef struct _city_info_t {
char* name;

} city_info_t;

city_info get_city name(double latitude,
double longitude) {
city_info_ city info;
char city_name[100];
city_info.name = city_nhame;
return city_info;

}



Common C Pitfalls (2)

* What's wrong and how to fix it?

char* buf = (char*)malloc(32);
strcpy(buf, argv[1]);



Common C Pitfalls (2)

* Problem: Buffer overflow
e Solution:

int buf_size = 32;

char* buf = (char*)malloc(buf_size),
strncpy(buf, argv[1], buf_size);

* Are buffer overflow bugs important?



Common C Pitfalls (3)

* What's wrong and how to fix it?

char* buf = (char*)malloc(32);
strncpy(buf, “hello”, 32);
printf(“%s\n”, buf);

buf = (char*)malloc(64);
strncpy(buf, “bye”, 64);
printf(“%s\n”, buf);

free(buf);



Common C Pitfalls (3)

* Problem: Memory leak

e Solution:
char* buf = (char*)malloc(32);
strncpy(buf, “hello”, 32);
printf(“%s\n”, buf);
free(buf);
buf = (char*)malloc(64);

* Are memory leaks important?
— OS, web server, web browser, your projects?



Bug in all previous examples

* We didn’t handle memory allocation
failures:

char *buf = (char*)malloc(32);
if (buf == NULL) return;

* You should do that in your code



Debugging C

Poll - What do you use to debug?
e Printf, printf, printf

* Stare at code

e Ask friends

« GDB



GDB

 Most frequent GDB commands
— Execution: run, continue (c), step (s), next (n)
— Break point: break, clear, condition
— Browsing the stack: up, down, backtrace
— Investigate data: display, print
— Browsing source: list

 Compile with ‘-g’ to have access to symbol
table and line numbers.

* More info at:
— http://sourceware.org/gdb
— http://www.cs.washington.edu/education/cou


http://sourceware.org/gdb
http://sourceware.org/gdb
http://sourceware.org/gdb
http://www.cs.washington.edu/education/courses/451/07au/section/rec2.pdf

