
CSE451 Fall 2008
Section 1

Roxana Geambasu
(roxana@cs)

About Me
• Fourth year Ph.D. student
• Research in:

– Large-scale storage systems (Hank,
Steve)

– Security (Yoshi, Hank)
– Personal data management (Magda,

Hank, Steve)

• First time teaching sections in the
U.S.
– So, I’ll be learning along with you 

Reminders

• Sign-up for the mailing list
• Start reading the book

– Homework 1 due on Monday

• Read and start Project 0 (due next
Wed.)

• Make sure you can access
forkbomb.cs.washigtnon.edu after
Friday
– If not, email support@cs or me

Office Hours

• Kristin: Tuesday 2-3pm and
Wednesday 4-5pm

• Nick: Monday and Wednesday 12 –
1pm

• Roxana: Wednesday 9-10am and
Friday (10:30--11:30am)

451 Projects
• 5 interesting but demanding projects

(mostly C):
– Practice C
– Shell & process control
– User-level threads
– Virtual memory
– File systems

• First one: work individually
• The other four: work in groups
• Likely to be similar to projects in the

past
• Start early on each project!

Project Rules
• Collaboration ok (except for the first

project)
– Let us know with whom you collaborate

• Copying is not ok
• Use only ‘forkbomb.cs.washington.edu’!

– Debug/run your programs in a sandbox (see
forkbomb info link on the web site)

– Do NOT use attu for projects

Project Grading

• What do you think we grade about
your code?

Project Grading
• Correctness: algorithm (protocol),

implementation
• Code structure and clarity
• Comments
• Memory management (for C, beware of mem.

leaks and buffer overflows)
• Error handling (file ops, mem. allocation, all

system calls)
• Input handling (unless specified otherwise)
• No warnings (compile with gcc -Wall)
• Performance (complexity) only when specified

Project 0
C programming warm-up

Due date: Oct. 1, 11:59pm

Project 0

• Part 1: Debug and extend a queue
implementation

• Part 2: Implement a hash table

• Goal of project 0:
– Dust up your knowledge of C, UNIX tools

(303) and data structures (326)
– Prepare you for next projects (e.g., function

pointers)

C & UNIX Tools Background

• How many of you have:
– written a C program?
– seen a Makefile?
– used gcc?
– used gdb?

Remember from Previous
Classes?

What are those and when are they used:
• Pointers and pointer arithmetic
• Static vs. dynamic memory allocation
• Call-by-value vs. call-by-reference
• Structures, typedef

• Good reminder and resources at:
http://www.cs.washington.edu/education/courses/451/07au/section/

rec1.htm

Common C Pitfalls (1)

• What’s wrong and how to fix it?
 char* get_city_name(double latitude,
 double longitude) {

 char city_name[100];

 …

 return city_name;

 }

Common C Pitfalls (1)

• Problem: return pointer to statically
allocated mem.

• Solution: allocate on heap
 char* get_city_name(double latitude,
 double longitude) {

 char* city_name = (char*)malloc(100);

 …

 return city_name;

 }

• Slightly more subtle example:
 typedef struct _city_info_t {
 char* name;

 … …

 } city_info_t;

 city_info get_city_name(double latitude,
 double longitude) {

 city_info_ city_info;

 char city_name[100];

 … …

 city_info.name = city_name;

 return city_info;

 }

Common C Pitfalls (2)

• What’s wrong and how to fix it?
 char* buf = (char*)malloc(32);
 strcpy(buf, argv[1]);

Common C Pitfalls (2)

• Problem: Buffer overflow
• Solution:
 int buf_size = 32;
 char* buf = (char*)malloc(buf_size);
 strncpy(buf, argv[1], buf_size);

• Are buffer overflow bugs important?

Common C Pitfalls (3)

• What’s wrong and how to fix it?

 char* buf = (char*)malloc(32);

 strncpy(buf, “hello”, 32);

 printf(“%s\n”, buf);

 buf = (char*)malloc(64);

 strncpy(buf, “bye”, 64);

 printf(“%s\n”, buf);

 free(buf);

Common C Pitfalls (3)

• Problem: Memory leak
• Solution:
 char* buf = (char*)malloc(32);

 strncpy(buf, “hello”, 32);

 printf(“%s\n”, buf);

 free(buf);

 buf = (char*)malloc(64);

 …

• Are memory leaks important?
– OS, web server, web browser, your projects?

Bug in all previous examples

• We didn’t handle memory allocation
failures:
char *buf = (char*)malloc(32);
if (buf == NULL) return;

• You should do that in your code

Debugging C

Poll – What do you use to debug?
• Printf, printf, printf
• Stare at code
• Ask friends
• GDB

GDB
• Most frequent GDB commands

– Execution: run, continue (c), step (s), next (n)
– Break point: break, clear, condition
– Browsing the stack: up, down, backtrace
– Investigate data: display, print
– Browsing source: list

• Compile with ‘-g’ to have access to symbol
table and line numbers.

• More info at:
– http://sourceware.org/gdb
– http://www.cs.washington.edu/education/courses/451/07au/section/rec2.pdf

http://sourceware.org/gdb
http://sourceware.org/gdb
http://sourceware.org/gdb
http://www.cs.washington.edu/education/courses/451/07au/section/rec2.pdf

