
1

1

CSE 451 Section 3:

Project0 highlights, 
File descriptors

2

Overview

� Project 0 highlights

� A bit more on project 1 (kernel devel part)

� File descriptors

3

Project 0 highlights

� Most frequent issue: 

Clean up before exiting main
� Memory leak in queue_remove

� Revise hash function properties

4

Cleanup

� Why should we clean up?

� What should we clean up?

5

Cleanup

We should clean up because:

� Always enforce rigorous programming style

� Sometimes the underlying system doesn’t release 
resources right away
� Processes in process pools

� Ports in older versions of Linux

� Fork doesn’t clean up

� Debugging
� E.g., debugging other memory leaks

� Sometimes others need cleanup info
� E.g., other Bittorrent nodes, chunk servers in GFS

6

Cleanup

We should clean up anything that we allocate:

� Dynamically allocated memory

� Open file descriptors

� Open ports

� Open network connections

� Release locks on files, delete lock files



2

7

Cleanup of Project0 Queue

� In main:
queue_element_t element = NULL;

while (!queue_is_empty(q)) {

queue_remove(q, &element);

}

8

Memory leaks

� What are they?

� Why should we avoid them?

� How can we avoid them?

9

Avoiding memory leaks

� Rule: Any malloc must be followed by a free on 
the same pointer

� Be careful about overwriting pointers!
boolean_t

queue_remove(queue_t q, queue_element_t *e) {

queue_link_t oldHead;

assert(q != NULL);

if (queue_is_empty(q))

return FALSE;

*e = q->head->e;

oldHead = q->head;

q->head = q->head->next;

free(oldHead);

return TRUE;

} 10

Avoiding memory leaks

� Pointer ownership

� Code, interfaces should be clear about who owns 
what pointers

� Comments

� Provide paired functions for creation (allocation) 
and destruction

� E.g., better solution for cleanup: put cleanup code in a 
queue.c/h: queue_destroy()

� Use debugger

� (Notion of ownership holds for other resources)

11

Hash functions properties

1. Deterministic:

� Always v1=v2 => hash(v1) = hash(v2)

2. Few collisions:

� If v1 != v2 => with high probability, 
hash(v1) != hash(v2)

12

Hash function ranking

� Rank the hash functions below from the standpoint 
of their properties

� Consider different workloads

� hash(v) = v                              (address of buffer)

� hash(v) = v[0:3]                        (first 4 bytes of v)

� hash(v) = v[0] + v[1]… + v[n-1]      (sum of bytes)

� hash(v) = v[0]*31n-1 + v[1]*31n-2 + … + v[n-1]

(v is a char* of length n, n>=4)



3

13

Overview

� Project 0 highlights

� A bit more on project 1 (kernel devel part)

� File descriptors

14

Kernel development steps:

� Modify the kernel

� Build the kernel image on forkbomb

make bzImage

� Transfer the bzImage to the Linux guest

� scp it to /boot

� Boot your new Linux kernel in VMware

� choose bzImage

15

Execcounts tips

� Look at examples of system calls

� E.g., getpid, kill, write

� Find and read online tutorials and examples

� Be very careful at translating addresses from 
userspace to kernel space

16

Overview

� Project 0 highlights

� A bit more on project 1 (kernel devel part)

� File descriptors

17

Process structure (task_struct)

struct task_struct {
volatile long state;                // running, blocked, stopped, zombie

unsigned long flags;
long priority;                        // scheduling priority

long counter;                       // before re-scheduling

unsigned long policy;            // sched policy: FIFO, round-robin, etc.
struct task_struct *next_task, *prev_task;    // doubly-linked list

struct task_struct *next_run, *prev_run;

int exit_code;
int pid;

struct task_struct *p_pptr;    // pointer to parent process
unsigned long start_time;

usingned short uid, gid;

struct files_struct *files; // 
struct mm_struct *mm;         // memory management

}

(Above is incomplete and approximate) 18

File descriptors

� What is a file descriptor?

� Examples?

� What happens on fork with open file ?



4

19

File descriptors

� A file descriptor is an index in the file table for 
the current process

� Each entry contains a pointer to a kernel structure 
storing the file’s info, file cursor position, flags, etc.

� Examples:

� Files, directories

� STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

� Block/character devices

� Sockets

� Pipes

20

File descriptor table

File structures

STDIN_FILENO  (0)

File descriptor table

User

Kernel

STDOUT_FILENO (1)

STDERR_FILENO (2)

Process

21

Duplicating file descriptors

� Man dup2: dup2(old_fd, new_fd)

� Duplicates the old_fd entry in the process’ file table 
into the new_fd entry

File structuresFile descriptor table

Kernel
oldfd

newfd

22

Example: redirecting stdout

File structures

STDIN_FILENO  (0)

File descriptor table

Kernel

STDOUT_FILENO (1)

int outfile_fd = open(“log.out”,…)
dup2(outfile_fd, 1)

outfile_fd


