
1

1

Section 4

Threading and Project 2

(Many slides taken from Sec. 3 Winter 2006)
2

Project 0 stats

� Mean: 3.2 / 4

� Median: 3.35 / 4

� Stdev: 0.69

3

Project 2 will be up today

� Start EARLY!

� It’s long

� Read the assignment carefully

� Read it again

� Use the same groups as for project 1

� If you want to change, tell me soon!

4

Project 2

� You have to:

� Implement a user thread library

� Implement synchronization primitives

� Solve a synchronization problem

� Add Preemption

� Implement a multithreaded web server

� Get some results and write a (small) report

� Part a and b due separately (TBD)

� Whole project 2 will be due on Nov 10

Part a

Part b

5

Simplethreads

� We give you:
� Skeleton functions for thread interface

� Machine-specific code
� Support for creating new stacks

� Support for saving regs/switching stacks

� A generic queue
� When do you need one?

� Very simple test programs
� You should write more, and include them in the
turnin

� Singlethreaded web server

6

Simplethreads Code Structure

include/sthread.h

Other appsWeb server

(web/sioux.c)

test/*.c

lib/sthread_user.h

lib/sthread_user.c

lib/sthread_ctx.c

lib/sthread_ctx.h

You write this

sthread_switch_i386.h

sthread_switch_powerpc.h

lib/sthread_switch.S

lib/sthread_queue.c

lib/sthread_queue.h

lib/sthread_preempt.c

lib/sthread_preempt.h

2

7

Thread Operations

� What functions do we need?

� What should the TCB look like?

8

Thread Operations

� void sthread_init()

� Initialize the whole system

� sthread_t sthread_create(func start_func,
void *arg)
� Create a new thread and make it runnable

� void sthread_yield()
� Give up the CPU

� void sthread_exit(void *ret)
� Exit current thread

� Structure of the TCB:
struct _thread {

sthread_ctx_t *saved_ctx;

………

}

9

Sample multithreaded program

int main(int argc, char **argv) {

int i;

sthread_init();

for(i=0; i<3; i++)

if (sthread_create(thread_start, (void*)i) == NULL) {

printf("sthread_create failed\n");

exit(1);

}

sthread_yield();

printf("back in main\n");

return 0;

}

void *thread_start(void *arg) {

printf("In thread_start, arg = %d\n", (int)arg);

return 0;

}

� Output? (assume no preemption) 10

Managing Contexts (given)

� Thread context = thread stack + stack pointer

� sthread_new_ctx(func_to_run)
� creates a new thread context that can be switched to

� sthread_free_ctx(some_old_ctx)
� Deletes the supplied context

� sthread_switch(oldctx, newctx)
� Puts current context into oldctx

� Takes newctx and makes it current

11

How sthread_switch works

Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 1 running Thread 2 ready

Want to switch to thread 2…

Thread 2
registers

Thread 1 regs
12

Push old context

Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1

registers

Thread 1 regs

3

13

Save old stack pointer

Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1

registers

Thread 1 regs
14

Change stack pointers

Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 2
registers

Thread 1

registers

Thread 1 regs

15

Pop off new context

Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1

registers

Thread 2 regs
16

Done; return

Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1

registers� What got switched?
� SP

� PC (how?)

� Other registers

Thread 2 regs

Adjusting the PC
Thread 1 TCB
… SP

Thread 2 TCB
… SP

ESP

CPU

Thread 2 running:
switch(t2,...);

0x800: printf(“test 2”);

Thread 1

registers

� ret pops off the new
return address!

ra=0x800

PC

Thread 1 (stopped):

switch(t1,t2);
0x400: printf(“test 1”);

ra=0x400

18

Synchronization primitives: Mutex

� sthread_mutex_t sthread_mutex_init()

� void sthread_mutex_free(sthread_mutex_t lock)

� void sthread_mutex_lock(sthread_mutex_t lock)
� Returned thread is guaranteed to acquire lock

� void sthread_mutex_unlock(sthread_mutex_t lock)
� Release lock

� See sthread.h

4

19

Synchronization primitives:
Condition variables

� sthread_cond_t sthread_cond_init()

� void sthread_cond_free(sthread_cond_t cond)

� void sthread_cond_signal(sthread_cond_t cond)
� Wake-up one waiting thread, if any

� void sthread_cond_broadcast(sthread_cond_t cond)
� Wake-up all waiting threads, if any

� void sthread_cond_wait(sthread_cond_t cond,
sthread_mutex_t lock)
� Wait for given condition variable

� Returning thread is guaranteed to hold the lock
20

Things to think about

� How do you create a thread?
� How do you pass arguments to the thread’s start function?

� (sthread_new_ctx() doesn’t call function w/ arguments)

� How do you deal with the initial (main) thread?

� When and how do you reclaim resources for a
terminated thread?
� Can a thread free its stack itself?

� Where does sthread_switch return?

� Who and when should call sthread_switch?

� How do you block a thread?

� What should be in struct _sthread_mutex|cond?

21

Sthread is similar to pthread

� Pthread (POSIX threads) is a preemptive,
kernel-level thread library

� You can compare your implementation
against pthreads

� ./configure --with-pthreads

