
1

CSE 451: Operating Systems
Autumn 2009

Module 22
Distributed File Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 212/5/2009 2

Distributed File Systems

• A distributed file systems supports network-wide
sharing of files and devices

• A DFS typically presents clients with a “traditional” file
system view
– there is a single file system namespace that all clients see
– a client can observe the side-effects of other clients’ file

system activities: sharing is possible
– in many (but not all) ways, an ideal distributed file system

provides clients with the illusion of a shared, local file system

• But …with a distributed implementation
– read blocks / files from remote machines across a network,

instead of from a local disk

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 3

DFS issues

• What is the basic abstraction
– a remote file system?

• open, close, read, write, …
– a remote disk?

• read block, write block

• Naming
– how are files named?
– are those names location transparent?

• is the file location visible to the user?
– are those names location independent?

• do the names change if the file moves?
• do the names change if the user moves?

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 4

• Caching
– caching exists for performance reasons
– where are file blocks cached?

• on the file server?
• on the client machine?
• both?

• Sharing and coherency
– what are the semantics of sharing?
– what happens when a cached block/file is modified?
– how does a node know when its cached blocks are stale?

• if we cache on the client side, we’re presumably caching on
multiple client machines if a file is being shared

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 5

• Replication
– replication can exist for performance and/or availability
– can there be multiple copies of a file in the network?
– if multiple copies, how are updates handled?
– what if there’s a network partition? Can clients work on

separate copies? If so, how does reconciliation take place?

• Performance
– what is the performance of remote operations?
– what is the additional cost of file sharing?
– how does the system scale as the number of clients grows?
– what are the performance bottlenecks: network, CPU, disks,

protocols, data copying?

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 6

Example: Sun’s Network File System (NFS)
• The Sun Network File System (NFS) has become a common

standard for distributed UNIX file access
• NFS runs over LANs (even over WANs – slowly)
• Basic idea

– allow a remote directory to be “mounted” (spliced) onto a local
directory

– Gives access to that remote directory and all its descendants as if
they were part of the local hierarchy

• Pretty similar to a “local mount” or “link” on UNIX
– I might link

/cse/www/education/courses/451/09au/
as

/u4/lazowska/451
to allow easy access to my web data from my home directory

cd
ln –s /cse/www/education/courses/451/09au 451

(except for implementation and performance …)

2

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 712/5/2009 7

• ginger.cs exports the directory ginger.cs:/u4/lazowska
• norton.cs mounts this on /faculty/edl

– programs on norton.cs can access the remote directory
ginger.cs:/u4/lazowska using the local path /faculty/edl

• if, on ginger.cs, I had a file /u4/lazowska/myfile.txt
– programs on norton.cs could access it as /faculty/edl/myfile.txt

• note that different clients might mount the same exported
directory, but on different local paths
– e.g., forkbomb.cs might mount it on /facultyfiles/edlazowska
– then, the file ginger.cs:/u4/lazowska/myfile.txt could be accessed

with three different names
• on ginger.cs: /u4/lazowska/myfile.txt
• on norton.cs: /faculty/edl/myfile.txt
• on forkbomb.cs: /facultyfiles/edlazowska/myfile.txt

NFS particulars

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 8

NFS implementation

• NFS defines a set of RPC operations for remote file
access:
– searching a directory
– reading directory entries
– manipulating links and directories
– reading/writing files

• Every node may be a client, a server, or both
– E.g., a given machine might export some directories and

import others

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 9

• NFS defines new layers in the Unix file system

System Call Interface

Virtual File System

buffer cache / i-node table

(local files) (remote files)

UFS NFS

The virtual file system (VFS) provides
a standard interface, using v-nodes as
file handles. A v-node describes either
a local or remote file.

RPCs to other (server) nodes

RPC requests from remote clients,
and server responses

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 1012/5/2009 10

NFS caching / sharing

• On a file open, the client asks the server whether the
client’s cached blocks are up to date. (good!)
– but, once a file is open, different clients can perform

concurrent reads and writes to it and get inconsistent data
(bad!)

• Modified data is flushed back to the server every 30
seconds
– the good news is this bounds the amount of inconsistency to

a window of 30 seconds, and that this is simple to implement
and understand

– the bad news is that the inconsistency can be severe
• e.g., data can be lost, different clients can see inconsistent

states of the files at the same time

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 11

Example: CMU’s Andrew File System (AFS)

• Developed at CMU to support all of its student
computing

• Consists of workstation clients and dedicated file
server machines (differs from NFS)

• Workstations have local disks, used to cache files
being used locally (originally whole files,
subsequently 64K file chunks) (differs from NFS)

• Andrew has a single name space – your files have
the same names everywhere in the world (differs
from NFS)

• Andrew is good for distant operation because of its
local disk caching: after a slow startup, most
accesses are to local disk

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 12

AFS caching/sharing

• Need for scaling required reduction of client-server
message traffic
– Once a file is cached, all operations are performed locally
– On close, if the file has been modified, it is replaced on the

server

• The client assumes that its cache is up to date,
unless it receives a callback message from the server
saying otherwise
– on file open, if the client has received a callback on the file, it

must fetch a new copy; otherwise it uses its locally-cached
copy (differs from NFS)

3

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 13

Example: Berkeley Sprite File System

• Unix file system developed for diskless workstations
with large memories (differs from NFS, AFS)

• Considers memory as a huge cache of disk blocks
– memory is shared between file system and VM

• Files are permanently stored on servers
– servers have a large memory that acts as a cache as well

• Several workstations can cache blocks for read-only
files

• If a file is being written by more than 1 machine,
client caching is turned off – all requests go to the
server (differs from NFS, AFS)

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 1412/5/2009 14

Example: Google’s File System (GFS)

Independence
Small Scale
Variety of workloads

Cooperation
Large scale
Very specific, well-understood workloads

NFS, etc.

GFS

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 1512/5/2009 15

GFS: Environment
Why did Google build its own file system?

• Google has unique FS requirements
– huge volume of data
– huge read/write bandwidth
– reliability over tens of thousands of nodes with frequent failures
– mostly operating on large data blocks
– needs efficient distributed operations

• Google has somewhat of an unfair advantage…it has control
over, and customizes, its:
– applications
– libraries
– operating system
– networks
– even its computers!

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 1612/5/2009 16

GFS: Files

• Files are huge by traditional standards (GB, TB, PB)
• Most files are mutated by appending new data rather

than overwriting existing data
• Once written, the files are only read, and often only

sequentially.
• Appending becomes the focus of performance

optimization and atomicity guarantees

• NOTE: A major use of GFS is for storing event logs
– what did you search for, which link did you follow,
etc. Then these logs are mined for patterns. Hence
huge, append-only, read sequentially.

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 17

GFS: Architecture
• A GFS cluster consists of a replicated master and multiple

chunk servers and is accessed by multiple clients
• Each computer in the GFS cluster is typically a commodity Linux

machine running a user-level server process
• Files are divided into fixed-size chunks identified by an

immutable and globally unique 64-bit chunk handle
• For reliability, each chunk is replicated on multiple chunk

servers
• The master maintains all file system metadata (like, on which

chunk servers specific chunks are stored)
• The master periodically communicates with each chunk server

in HeartBeat messages to determine its state
• Clients communicate with the master (to access metadata (e.g.,

to find the location of specific chunks)) and directly with chunk
servers (to actually access the data)

• Neither clients nor chunk servers cache file data, eliminating
cache coherence issues

• Clients do cache metadata, however
• If the master croaks, Paxos is used to select a new master from

among the replicas
12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 1812/5/2009 18

GFS: Architecture

• Masters manage metadata (naming, chunk location, etc.)
• Data transfers happen directly between clients/chunkservers
• Files are broken into chunks (typically 64 MB)

• each chunk replicated on 3 chunkservers
• Clients do not cache data!

Client

ClientClientR
ep

lic
as

Masters

GFS Master

GFS Master

C0 C1

C2C5

Chunkserver 1

C0

C2

C5

Chunkserver N

C1

C3C5

Chunkserver 2

…

4

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 19

GFS: Reading

• Single master vastly simplifies design
• Clients never read and write file data through the master.

Instead, a client asks the master which chunk servers it should
contact

• Using the fixed chunk size, the client translates the file name
and byte offset specified by the application into a chunk index
within the file

• It sends the master a request containing the file name and
chunk index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key

• The client then sends a request to one of the replicas, most
likely the closest one. The request specifies the chunk handle
and a byte range within that chunk

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 20

GFS: Writing

• Primary orders concurrent
requests, and triggers disk
writes at all replicas

• Primary reports success or
failure to client

• The write is transactional

• Client asks master for identity of primary and
secondary replicas (chunk servers)

• Client pushes data to memory at all replicas via a
replica-to-replica “chain”

• Client sends write request to primary

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 2112/5/2009 21

Summary of Distributed File Systems

• There are a number of issues to deal with:
– what is the basic abstraction?
– naming
– caching
– sharing and coherency
– replication
– performance
– workload

• No right answer! Different systems make different
tradeoffs…

12/5/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 22

• Performance is always an issue
– always a tradeoff between performance and the semantics

of file operations (e.g., for shared files).

• Caching of file blocks is crucial in any file system
– maintaining coherency is a crucial design issue.

• Newer systems are dealing with issues such as
disconnected operation for mobile computers, and
huge workloads (e.g., Google)

