
- 8 -

QUESTION 6

For this question you are given the following definitions and functions:

thread_start_fp; // a function pointer type to a
 // function that takes a (void*) as
 // argument and returns a (void*)
thread_t; // a thread type

// A function that, given an allocated thread_t
// pointer, a function pointer, and arguments,
// schedules a new thread
thread_create(thread_t * thread,

 thread_start_fp * fp,
 void * args);

// A function that performs a “join” on a given
// thread_t
thread_join(thread_t * thread);

mutex_t; // a mutex type
cond_t; // a condition variable type
// You can assume with both of these that they get
// initialized for you after you have declared them

// A function that acquires a mutex
mutex_acquire(mutex_t * mutex);
// A function that releases a mutex
mutex_release(mutex_t * mutex);
// A function that “waits” on a given condition
condition_wait(cond_t * cond, mutex_t * mutex);
// A function that “signals” a given condition
condition_signal(cond_t * cond);
// A function that “broadcasts” on a given condition
condition_broadcast(cond_t * cond);

// A blocking function that may take arbitrarily long
// to complete
BlockingNetworkCall();

-9-

You will design two functions. One will be a worker function and the other will
create threads that run this worker function:

A. Design a function called “worker.” This function will be the body of the

threads that you will be creating. This function must do the following
o Get an ID (some number), as well as a callback (some function pointer) from

its arguments
o The callback should be a function that takes an int and returns void
o It must call the “BlockingNetworkCall()” function
o After “BlockingNetworkCall()” returns, it must call the callback

with the thread ID as argument
o Finally, it must return

B. Design a function called “schedule_workers.” The purpose of this
function is to create the worker threads. It must do the following:
o Get a callback and an integer num_threads as an argument
o Create num_threads worker threads with a unique ids (assume a

“GetUniqueId()” function)
o Return when all the threads are done

HINTS: You will need to define two new types – these should be useful in passing
arguments to your workers. Remember to follow standard C coding practices and
conventions.

-10-

Sample Solution:

// The new types
typedef void (*callback_fp)(int);

struct start_info {
 int id;
 callback_fp callback;
};
typedef struct start_info start_info_t;

// The worker thread body
void* worker(void *arg) {
 start_info_t *start = (start_info_t*)arg;
 BlockingNetworkCall();
 start->callback(start->id);
 free(start);
}

// The function that runs the workers and waits for them
void schedule_workers(callback_fp callback,
 int num_threads) {
 thread_t * threads =
 (thread_t*)malloc(num_threads * sizeof(thread_t));
 // create all the threads
 for (int i = 0; i < num_threads; ++i) {
 start_info_t *start =
 (start_info_t*)malloc(sizeof(start_info_t));
 start->callback = callback;
 start->id = GetUniqueId();
 thread_create(&thread[i], &worker, (void*)start);
 }

 // join on all the threads
 for (int i = 0; i < num_threads; ++i) {
 thread_join(&thread[i]);
 }

 free(threads);
}

-11-

C. Now, assume that the “BlockingNetworkCall()” function uses a limited
underlying resource (for example, network connection channels.) Assume that
the maximum number of available channels is given to you by the constant
MAX_CHANNELS and assume that “BlockingNetworkCall()” uses
exactly one channel. Redesign/enhance your worker function to use the given
synchronization primitives to make sure that BlockingNetworkCall is
never called if there are no available channels, and that it always executes as
soon as possible when there are available channels.

Sample Solution:

int available_channels = MAX_CHANNELS;
mutex_t mutex;
cond_t available_cond;

void* worker(void *arg) {
 start_info_t *start = (start_info_t*)arg

 mutex_lock(&mutex);
 while(available_channels <= 0) {
 cond_wait(&available_cond, &mutex);
 }
 // We are guaranteed to hold the mutex and have channels
 --available_channels; // use a channel
 mutex_unlock(&mutex);

 // Make the long blocking call outside critical sections
 BlockingNetworkCall();

 mutex_lock(&mutex);
 ++available_channels; // relinquish a channel
 mutex_unlock(&mutex);
 cond_signal(&available_cond); // let a waiting thread in

 free(start);
}

