CSE 451: Operating Systems

Section 5
Synchronization

10/28/10

Project 1 Recap

*Tips:
* Check flags with &, not ==

% Use constants for printed strings
#define PROMPT “CSE451Shell>”

% Use errno/perror(3) for error detection

* To make grading easier:
% Preserve the build hierarchy/commands
% Check your files before turnin!

10/28/10

Project 2.a is almost due

sk Remember to write more test cases!

* Writeups:
% Design decisions & alternative implementations:
give them some real thought
% Be mindful of what you use as a resource (and
how much)

% We expect you to research, but we expect you to
fumble around a little too

10/28/10

10/29/10

Synchronization

10/28/10

Synchronization support

% Processor level:
* Disable/enable interrupts
% Atomic instructions (test-and-set)

% Operating system level:

%k Special variables: mutexes, semaphores,
condition variables

% Programming language level:

% Monitors, Java synchronized methods
10/28/10

Disabling/enabling interrupts

Thread A: Thread B:
disable irqg() disable irqg()
critical section() critical section()
enable irqg() enable irqg()

% Prevents context-switches during execution
of critical sections

%k Sometimes necessary

* Many pitfalls

10/28/10

Processor support

3k Atomic instructions:
%k test-and-set
% compare-exchange (x86)

* Use these to implement higher-level
primitives

* E.g. test-and-set on x86 (given to you for part 4)

is written using compare-exchange

10/28/10

10/29/10

Processor support

* Test-and-set using compare-exchange:

compare exchange (lock t *x, int y, int z):

if (*x == vy)
*x = z;
return y;
else

return *x;

}
test and set(lock t *lock) {
2?7

}

10/28/10

Processor support

* Test-and-set using compare-exchange:

compare exchange(lock t *x, int y, int z):

if(*x == vy)
*X = z;
return y;
else

return *x;

}
test and set(lock t *lock) {

compare exchange (lock, 0, 1);

}

10/28/10 10

Project 2: preemption
*Think about where synchronization is
needed

%k Start inserting synchronization code
* disable/enable timer interrupts
* atomic_test_and_set

10/28/10

Semaphores

) Semaphore = a special variable

* Manipulated atomically via two operations
% P (wait): tries to decrement semaphore
% V (signal): increments semaphore

* Has a queue of waiting threads
* If execute wait() and semaphore is available, continue
* If not, block on the waiting queue
%k signal() unblocks a thread on queue

10/28/10 12

10/29/10

Mutexes

10/28/10 13

Mutexes

* A binary semaphore (semaphore initialized
with value 1)

* A lock that waits by blocking, rather than
spinning

10/28/10 14

Aside: kernel locking

%k Can we use mutexes inside our kernel?

10/28/10 15

Aside: kernel locking

%k Can we use mutexes inside our kernel?
% Sometimes...

* Spinlocks more common than semaphores/
mutexes in Linux

* Reader-writer locks (rwlocks):

* Allow multiple readers or single writer
* Good idea?
* http://lwn.net/Articles/364583/

10/28/10 16

10/29/10

Condition variables

%k Let threads block until a certain event occurs
(rather than polling)

* Associated with some logical condition in

program
while (x <= vy) {
sthread user cond wait (cond, lock)

}

10/28/10

Condition variables

%k Operations:
* wait: sleep on wait queue until event happens

% signal: wake up one thread on wait queue
* Explicitly called when event/condition has occurred
% broadcast: wake up all threads on wait queue

10/28/10

Condition variables

sthread user cond wait(sthread cond t cond,
sthread mutex t lock)

* Should do the following atomically:
% Release the lock (to allow someone else to get in)
% Add current thread to the waiters for cond
* Block thread until awoken (by signal/broadcast)
% So, must acquire 1ock before calling wait()!

% Read man page for
pthread cond [wait|signal|broadcast]

10/28/10

Example synchronization
problem

* Late-Night Pizza
% A group of students study for CSE 451 exam
% Can only study while eating pizza

% If a student finds pizza is gone, the student goes
to sleep until another pizza arrives

% First student to discover pizza is gone orders a
new one

% Each pizza has S slices

10/28/10

20

10/29/10

Late-night pizza

%) Each student thread executes the following:
while (must study) {
pick up a piece of pizza;
study while eating the pizza;

10/28/10

21

Late-night pizza
% Synchronize student threads and pizza
delivery thread
* Avoid deadlock
*When out of pizza, order it exactly once

% No piece of pizza may be consumed by more
than one student

10/28/10 22

Semaphore/mutex solution

%k Shared data:

semaphore t pizza; //Number of available
//pizza resources;
//init to 0

semaphore t deliver; //init to 1

int num slices = 0;
mutex t mutex; //guards updating of

//num_slices

10/28/10

23

student thread {

delivery guy thread ({
while (must study) { while (employed) {
wait (pizza); wait (deliver) ;
make pizza();
acquire (mutex) ; acquire (mutex) ;
num_slices--; num_slices=S;
if (num_slices==0)
signal (deliver) ;
release (mutex) ; release (mutex) ;
study () ; for (1i=0;i<S;i++)

} signal (pizza);

10/29/10

10/29/10

Student () { DeliveryGuy () {
ege ° ° while(diligent) { while (employed) {
Condition variable solution Detiee Helenpioyed)
if (élices >0 o order.wait (mutex) ;
*Sh d d . slices—=; makePizza () ;
are ata: } '
int slices=0; else { slices = 5;
bool has_been_ ordered; if (lhas been ordered) { has_been ordered =
Condition order; //an order has been order.signal (mutex) ; false;
//placed has_been ordered = mutex.unlock () ;
Condition deliver; //a delivery has true; deliver.broadcast () ;
//been made))
Lock mutex; //protects “slices”;

; ; deliver.wait (mutex); }
//associated with

//both Condition
//variables

}

mutex.unlock () ;
Study () ;

10/28/10 25

Monitors Monitors

* An object that allows one thread inside at a CHH
cv
time Wait sets/ shared data
~ofel
* Contain a lock and some condition variables Eniry oot dueu of threads
rying to enter the monitor fO{...}
%k Condition variables used to allow other threads I:I_‘D_‘
to access the monitor while one thread waits for |:| I:I 0t
an event to occur hO{...}
At most one thread /
in monitor at a operations (procedures)
time
10/28/10 27 10/28/10 28

Monitors in Java

% Each object has its own monitor

Object o

*The Java monitor supports two types of

synchronization:

%k Mutual exclusion
synchronized (o)

%k Cooperation
synchronized (o)
synchronized (o)

10/28/10

{ O.wait(); }
{ O.notify(); }

29

10/28/10

30

Semaphores vs. CVs

Semaphores

% Used in apps

% wait() does not always
block the caller

%k signal() either releases
a blocked thread, if
any, or increases
semaphore counter

10/28/10

Condition variables

* Typically used in
monitors

* wait() always blocks
caller

% signal() either releases
a blocked thread, if
any, or the signal is lost
forever

31

