CSE 451: Operating Systems

Section 8
Linux buffer cache; design principles

Outline

*Thread preemption (project 2b)
*RPC
* Linux buffer cache

* Networking design principles

12/2/10 2

Mutex: no preemption

mutex lock (lock) mutex unlock (lock)
if (lock->held == 0) if (!is_empty(
lock->held = 1; lock->waitq))
else next = dequeue (
enqgqueue (lock->waitq) ;
lock->waitqg, enqueue (readyq,
current) ; next);
schedule () ; else

lock->held = 0;

12/2/10

Mutex: with preemption (wrong)

mutex lock (lock) mutex unlock (lock)
while (test and set atomic_ clear (
(lock->held)) lock->held) ;

{}

12/2/10 4

12/2/10

Mutex: with preemption (wrong)

mutex lock (lock)

while (test and set

(lock—->held))
schedule () ;

12/2/10

mutex unlock (lock)
atomic_ clear (
lock->held) ;

Mutex: with preemption (wrong)

mutex lock (lock)

while (test _and set

(lock->held))

enqueue (
lock->waitq,
current) ;

schedule () ;

12/2/10

mutex unlock (lock)
if (!is_empty(
lock->waitq))
splx (HIGH) ;
next = dequeue (
lock->waitq) ;
enqueue (readyq,
next) ;
splx (LOW) ;
atomic clear (
lock->held) ;

Mutex: with preemption (wrong)

mutex lock (lock)

(lock->held))

mutex unlock (lock)

enqueue (

while (test and set if (!is_empty(
lock->wait
What if @)
prempted splx (HIGH) ;
lock->waitgq, here? next = dequeue (

current) ;

schedule () ;

12/2/10

lock->waitq) ;
enqueue (readyq,
next) ;
splx (LOW) ;
atomic clear (
lock->held);

Mutex: with preemption (right)

mutex lock (lock)
while (test and set(
lock->codelock)
{}
if (lock->held == 0)
lock->held = 1;
atomic_clear (
lock->codelock)
else
enqueue (
lock->waitq,
current) ;
atomic_clear (
lock->codelock)
schedule() ;

mutex unlock (lock)
while (test and set(
lock->codelock))
{}
if (!is_empty(
lock->waitq))
next = dequeue (
lock->waitq);
splx (HIGH) ;
enqueue (readyq,
next) ;
splx (LOW) ;
else
lock->held = 0;
atomic_clear(
lock->codelock)

RPC

12/2/10

RPC

%k Remote procedure call: causes a procedure
to execute in some other address space

% Usually an address space on some other
machine

* Interface description language (IDL) defines
the interface that the server makes available
to the client

12/2/10 10

RPC on Android

* Android uses RPC for communication
between applications and system
components
% All on the same device!

% Uses all of the standard RPC components:
* IDL file
* Auto-generated stubs for client, server
% Marshalling and unmarshalling of arguments...

12/2/10

Linux file system layers

Application
Files, directories — User
' Kernel
VFS
Inodes, direntries/\
cse451fs ext2 ext3 NFS

Blocks \/

Buffer cache

|
—— Disk drivers ,}

12/2/10

Linux buffer cache

%k Buffer cache: just an area of memory

%k cat /proc/meminfo

% Caches disk blocks and buffers writes
* File read () checks for block already in buffer
cache
* If not, brings block from disk into memory
* Filewrite () is performed in memory first
% Data later written back to disk (when? By who?)

12/2/10

Linux buffer cache

*Block is represented by abuffer head
* Actual dataisin buffer head->b data

% Cache manipulatesbuffer headand its
b data separately

12/2/10 14

Buffer cache interface

*include/linux/buffer head.h

*Read a block: FS uses sb_bread():
* Find the corresponding buffer head

% Create it if it doesn’t exist
* Make sure buffer head->b dataisin
memory (read from disk if necessary)

12/2/10

Buffer cache interface

*Write a block: mark buffer dirty(),
thenbrelse ()
* Mark buffer as changed and release to kernel
% Kernel writes block back to disk at a convenient
time
* bdflush / pdflush threads
* sync command

12/2/10 16

12/2/10

cse451fs functions

cse451 bread(struct buffer head **pbh,
struct inode *inode, int block, int create)

* Getsbuffer head for given disk block, ensuring its
b_dataisin memory and ready to use

* Calls cse451 getblk()
csed51 getblk(struct buffer head **pbh,
struct inode *inode, int block, int create)

* Getsbuffer head for given disk block, creating it if it
doesn’t exist

* Doesn’t necessarily bringb_data into cache

% Both of these functions increment the block’s
refcount, so must be paired withabrelse ()

12/2/10 17

Project 3

%k Questions?

12/2/10

Networking design principles

* A few key principles:
% Layering
* End-to-end principle
%k Separation of mechanism and policy

* All of these apply to operating systems (and
elsewhere!) as well

12/2/10 19

Open Systems Interconnection (OSl) Reference Model

Upper Layers
N:ﬂicatinn Presentation Session Transport Network
yer (7) Layer (6) Layer (5) Layer (4) Layer (3)
E-mail POP/SMTP POP/25
Transmission Intemet
Newsgroups Usenet 532 Control Protocol
Protocol (TCP) Version 6
Web
\Applications| HTTP 80
File Transfer FTP 20421
Host Sessions Telnet 23
Directol
ey DNS 53
User Interet
Network Mgt SNMP 161/162 Datagram Protocol
Protocol (UDP) Version 4
File Services NFS p.,,g',.';‘,:,p,,

Lower Layers

Data Link
Layer (2)

SLIP, PPP

802.2 SNAP

Ethemet II

Physical
lay;er 1)
RS-X, CAT 1
ISDN

ADSL

ATM

FDDI

CAT1-5

Coaxial
Cables

12/2/10

Layering

*Internet designers didn’t get it all right the
first time

* Design for choice
* Rigid designs will be broken

12/2/10

21

End-to-end principle

* Danger of putting functionality at lower
layers: upper layers won’t need it, but will
pay cost anyway
% Example: reliability checksums

% E2E principle says to move functionality
towards upper layers (closer to application)

% Other ways of phrasing it:
% Smart endpoints, dumb network
* Application knows best what it needs

12/2/10

22

Mechanism vs. policy

* Principle: design system so that mechanisms
are separate from policy

* Implement mechanisms that enable wide range
of policies
* Caveat: usability (“burden of choice”)

12/2/10

23

12/2/10

24

12/2/10

